Chapter 14 Answers to Problems (quantitative only)
1. A grid of squares has been placed over a map and the number of points falling in each square is counted. The number in each quadrat of the 100 cell map illustrated below represents this frequency
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a. Construct a frequency distribution of points per quadrat

Solution:
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b. Determine the mean and variance of the number of points per quadrat
Solution:

There are
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quadrats in the table and a total of
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 points. The number of points is easily determined from the frequency distribution above (21 x 1 + 5 x 2).
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c. Is the spatial distribution of points random?

Solution:

Given the mean and variance of the number of points per quadrat, the point distribution appears to be random, with the variance/mean ratio close to the value 1.0. A more formal test employs the Student’s t-distribution:
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We would not reject a null hypothesis stating that the point distribution was random with a t-value this small. The boundary for the critical region leading to rejection of the null hypothesis is approximately 1.99 with 99 degrees of freedom.
2. One problem in quadrat analysis is that the results are highly dependent on the size of the quadrats chosen. Conclusions drawn from a study based on a certain quadrat size may be contradicted by conclusions of a second study of the same data based on a different quadrat size. This phenomenon might be called the scale problem, by analogy to the problem identified in descriptive spatial statistics (Chapter 3). To examine the impact of quadrat size, complete parts a-c of question 1, using the same base but with the quadrats grouped into fours, forming 25 larger square quadrats.
a. Construct a frequency distribution of points per quadrat

Solution:
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b. Determine the mean and variance of the number of points per quadrat

Solution:

There are
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quadrats in the table and a total of
[image: image13.wmf]31

=

n

 points. The number of points is easily determined from the frequency distribution above (21 x 1 + 5 x 2).
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c. Is the spatial distribution of points random?

Solution:
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, therefore do not reject the null hypothesis that the distribution is random.

4. Coordinates for a set of n = 20 points of five maps A, B, C, D, and E, are given below. The coordinates are based on a 10 x 10 km grid laid over an area A = 100 km2. 

	Map coordinates

	Point
	A
	B
	C
	D
	E

	1
	(2, 1)
	(0.5, 0.5)
	(2, 1)
	(1, 3)
	(2, 4)

	2
	(2, 3)
	(4, 0.25)
	(2, 3)
	(1, 5)
	(2, 4.5)

	3
	(2, 5)
	(7, 0.75)
	(1, 2)
	(1, 9)
	(2, 5)

	4
	(2, 7)
	(9.5, 0.5)
	(3, 2)
	(2, 1)
	(2, 5.5)

	5
	(2, 9)
	(5, 2)
	(5, 4)
	(2, 4)
	(2, 6)

	6
	(4, 1)
	(2, 2.25)
	(1, 5.5)
	(3, 2)
	(1.5, 5)

	7
	(4, 3)
	(4, 4)
	(4, 5.5)
	(3, 6)
	(1.5, 1.5)

	8
	(4, 5)
	(5, 5)
	(3, 6)
	(3, 10)
	(3, 5)

	9
	(4, 7)
	(8, 4)
	(3, 7)
	(4, 8)
	(3, 5.5)

	10
	(4, 9)
	(8.5, 3.5)
	(3.5, 6)
	(5, 1)
	(1.5, 6)

	11
	(6, 1)
	(8.5, 4.5)
	(6, 5)
	(5, 4)
	(7, 4)

	12
	(6, 3)
	(2, 6.5)
	(6, 5.5)
	(6, 6)
	(7, 4.5)

	13
	(6, 5)
	(0.5, 9.5)
	(6, 6)
	(6, 9)
	(7, 5)

	14
	(6, 7)
	(3, 9)
	(6, 6.5)
	(7, 2)
	(7, 6)

	15
	(6, 9)
	(5, 9.5)
	(9, 2)
	(7, 4)
	(6.5, 4)

	16
	(8, 1)
	(9.5, 9.5)
	(8, 9)
	(8, 7)
	(6.5, 6)

	17
	(8, 3)
	(4, 7.5)
	(8, 8)
	(8, 9)
	(8, 4)

	18
	(8, 5)
	(4.5, 7)
	(8, 7)
	(9, 3)
	(8, 5)

	19
	(8, 7)
	(4.5, 8)
	(9, 8.5)
	(9, 8)
	(8, 6)

	20
	(8, 9)
	(5, 7.5)
	(7, 8.5)
	(10, 5)
	(7, 5.5)


b. For each map, calculate the distance between each point and its nearest neighbor. A spreadsheet program is a useful vehicle for this task, along with a function for finding the minimum.

Solution for Map B:

The nearest neighbor distances for map B are: 2.305 2.016 2.359 2.512 2.016 2.305 1.414 1.414 0.707 0.707 0.707 2.236 2.550 2.550 1.581 4.5 0.707 0.707 0.707 0.707.
c. Determine 
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 for each map, the observed mean nearest neighbor distance.

Solution:



Using the 20 nearest neighbor distances above,
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d. Find 
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 for a map with n = 20 points and A = 100 km2.
Solution:
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e. Calculate R for each map and classify each map as clustered, dispersed, or nearly random.

Solution:
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 An R value of 1.552 is more dispersed than random. A more formal test of the hypothesis for randomness employs Z-scores as the test statistic. 
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The Z-score is significantly greater than 1.96 suggesting that we should reject the null hypothesis that the point pattern of Map B is random, and conclude that the point pattern is consistent with a dispersed or uniform distribution.
5. Figure 4-19b shows a pattern consistent with negative spatial autocorrelation. Why?  Perform the join-count test for randomness on Figure 4-19b when contiguity is measured using the "Rook's case".

Solution:

First, from Figure 4-19b, the number of black-white joins is 60. The total number of joins in the study region is also 60. The number of black areas is 18, the same as the number of white areas. The observed number of black-white joins is 60. We have no information other than that presented in the figure and thus adopt the assumption of non-free sampling. Under the non-free sampling assumption, the expected value and standard deviation of the number of black-white joins are
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We test for the significance of the join-count using a Z-score as follows
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The Z-score of 7.716 lies far in the critical region of the normal distribution indicating that we should reject the null hypothesis of a random distribution of black-white areas. Because the Z-score falls into the positive error tail we conclude that the distribution of black-white areas is dispersed or uniformly distributed.
6. The table below shows the value of a variable of interest (X) at six locations. The coordinates of those locations are also provided. 
	Points
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	Coordinates

	1
	14
	(1, 5)

	2
	12
	(2, 4)

	3
	8
	(5, 4)

	4
	8
	(3, 2)

	5
	5
	(4, 2)

	6
	4
	(5, 1)


a. Find the observed value of Moran's I for these data.


Solution:

Use the simplified form of the equation for the observed value of Moran’s I from the top of page 557. To use this we need to construct a distance matrix between all pairs of our six points. After finding this distance matrix, obtain the spatial weights matrix that comprises all the values
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 is the Euclidean distance between each pair of points i and j. Remember that
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 Then, row standardize the weights matrix so that the values in each row sum to one. This row standardized weights matrix is shown below.

	0
	0.431353
	0.147934
	0.169144
	0.14375
	0.107819

	0.340487
	0
	0.160483
	0.215317
	0.170244
	0.113469

	0.141834
	0.194927
	0
	0.206782
	0.26153
	0.194927

	0.109812
	0.177093
	0.140021
	0
	0.395981
	0.177093

	0.085899
	0.128878
	0.163
	0.364467
	0
	0.257756

	0.093027
	0.124028
	0.175417
	0.235354
	0.372173
	0


Now insert these values into the equation for Moran’s I. The observed value of Moran’s I for our this problem is 
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b. Do the data points appear to be significantly spatially autocorrelated?

Solution:

The expected value of Moran’s I for a random distribution is
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 for this example. Our observed value of Moran’s I of 0.119 indicates some positive spatial autocorrelation in the data, but it is significant? To answer this question, we must find the standard deviation of Moran’s I. For simplicity we work with the assumption of normality. Note that if you are unsure, it is safer to work with the randomization assumption. The variance of Moran’s I under the assumption of normality is a little tedious to calculate, but using the terms defined on pages 557 and 558, and using our row standardized weights matrix, 
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The test statistic for Moran’s I is based on the z-score, so for this problem, 
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, and we would not reject the null hypothesis that the sample data are randomly distributed.
7. Example 14-6 made use of a binary contiguity matrix for the contiguous 48 states of the US, as well as a matrix of the inverse of the distances between state centroids. These matrices are included along with other data sets on the book's website. The binary contiguity matrix for US states is statebincon.html and the matrix of the inverse of distances between state centroids (stateinverse.html). Using this information, and the teacher's wage data from Chapter 2, test the hypothesis that the state distribution of teacher's wages is random.


Solution:

The expected value of Moran’s I consistent with a random distribution of state salary date for teacher’s wages is 
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 Using a binary contiguity matrix (rook case) to represent the geography of US states, and using the teacher salary data, the observed value of Moran’s I is 0.3109. The p-value associated with this observed value of Moran’s I, consistent with the randomization assumption is 0.004. Thus, we would reject the hypothesis that teacher wage data by state are randomly distributed, and conclude those data exhibit a spatial pattern consistent with positive spatial autocorrelation.
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