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1

In this appendix we demonstrate using the likelihood of an individual’s observed 
response vector to estimate their location. We present two approaches, the first is a sim-
plistic approach, whereas the second is a more sophisticated strategy that is commonly 
used. For both approaches we assume that we know the item parameters.

In general, the probability of a response vector, x , is given by

( ) ( )θ θ θ −

=
ϑ = −∏

L
(1 )

1

( | , ) (1 )j jx x
j j

j

p p px ,	 (A.1)

where jp  is short for θ α δ( | , , )j jp x , jx  is the binary response to item j, L is the number
of items on the instrument, ϑ  is a matrix containing the item parameters (e.g., α  and 
δ sj ), and “ Π ” is the product symbol. Once the responses are observed this expression
becomes a likelihood function (Hambleton & Swaminathan, 1985). In other words, the 
likelihood of person i’s observed response vector, ix , is given by

θ −

=
ϑ = −∏

L
(1 )

1

( | , ) (1 )ij ijx x
i i j j

j

L p px

and

θ
=

 ϑ = + − − ∑
L

1

ln ( | , ) ln( ) (1 )ln(1 )i i ij j ij j
j

L x p x px , (A.2)

where θ ϑln ( | , )i iL x  is the log likelihood function. The location of the maximum of the
log likelihood function is the same as for the likelihood function. In the following we 
use the log likelihood function and for notational convenience symbolize it as lnL.
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ESTIMATING AN INDIVIDUAL’S LOCATION:  
EMPIRICAL MAXIMUM LIKELIHOOD ESTIMATION

Empirical maximum likelihood estimation (MLE) is a comparatively crude method of 
determining the location of the maximum of a likelihood function. Its main advantage is 
that it does not require knowledge of a function’s derivatives and therefore is useful for 
initial or exploratory work. In this approach the maximum may be determined by per-
forming a binary search of the lnL throughout the θ  range of interest (this is conceptu-
ally equivalent to the bisection method used in numerical analysis). We start by setting a 
lower bound (LB) and an upper bound (UB) at, say –3.0 and 3.0, respectively. This range 
is bisected (the initial θ̂  is θ0  = 0.0) and we determine whether lnL is greater above or
below θ0

ˆ . If lnL is less than its value at θ0
ˆ , then the next iteration has a new UB set at

0 (i.e., θ0
ˆ ) and the range between this new UB and the LB is bisected. Therefore, the

revised θ1
ˆ  is –1.5, the halfway point between –3.0 and 0.0. Again, we determine whether

lnL is greater above or below θ1
ˆ  and the lower/upper bound is appropriately reset. This

process continues until the θ  at which lnL has its maximum is determined to a desired 
degree of accuracy. Applying this approach to the log likelihood for the pattern 11000 is 
shown in Figure A.1. The vertical line in the body of the graph shows that the location 
of the maximum of the log likelihood for the response pattern 11000 occurs at approxi-
mately –0.85. This value would be our θ̂  for this response pattern.

FIGURE A.1.  Log likelihood function for the pattern 11000.
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ESTIMATING AN INDIVIDUAL’S LOCATION:  
NEWTON’S METHOD FOR MLE

The empirical MLE approach is inefficient and does not provide us with a standard error 
of estimate (i.e., an index of the accuracy of our estimate). Its primary advantage is that 
it can be applied without knowledge of the derivatives of the likelihood function. How-
ever, a more sophisticated approach involving the derivatives of the likelihood function 
provides the sample standard error of estimate. The idea of a likelihood and the maxi-
mum likelihood method is presented by Fisher (1971a, 1971b). In the following we first 
describe the method and then apply it in the IRT context.

To understand this approach, examine the lnL function shown in Figure A.2. We 
have drawn a series of lines tangent to the function that vary in their respective slopes 
(these are the lines labeled (a), (b), and (c)). As we progress from line (a) to line (c) we 
see that the slope is greatest for line (a) and decreases until for line (c) it is 0. As such, 
to find the location of the maximum of the function we simply need to determine where 
the slope of the tangent line is equal to zero. Symbolically,

	 slope = ∆=
∆

change in Y

change in X

Y

X
= 0

FIGURE A.2.  Log likelihood function for the pattern 11000.
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or, alternatively, the slope is zero when

	 ∆Y  = 0.

To find the maximum of the lnL function we use an iterative process. The θ̂  at 
which lnL is maximized (i.e., the slope = 0) is found by iterating through a series of 
θ̂s , with each iteration’s θ̂  reflecting a refinement over the previous iteration’s θ̂ . The 
process continues to entertain improved θ̂s  until the difference between two successive 
θ̂s  is considered to be unimportant. This approach to finding the root of an equation is 
called Newton’s method and is a commonly used method for solving equations.1,2

The bisection method described above worked by bracketing a range of θ  and 
searching the bracket for the location of the maximum of lnL. This location is subse-
quently improved or refined by halving the bracket and re-performing the search. By 
making the brackets progressively smaller across iterations, one could find the location 
of the maximum to a desired degree of accuracy. Newton’s method works in a similar 
iterative fashion. Conceptually, Newton’s method consists of a series of progressively 
smaller right triangles (rather than brackets). One of these triangles is shown in Figure 
A.3; the right triangle is inverted. The hypotenuse of the right triangle in Figure A.3 cor-
responds to one of the tangent lines shown in Figure A.2 (e.g., line (a)). The horizontal 
leg of the triangle (the “adjacent leg” to the angle ω ) reflects the change in the horizon-
tal axis, ∆X , whereas the vertical leg of the triangle (the “opposite leg” to the angle ω ) 

FIGURE A.3.  One-step in the Newton method.
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reflects the change in the vertical axis, ∆Y . Moreover, the “height” of the function at a 
point (e.g., θ(0)ˆ ) is the length of the opposite leg at that point and is given by θ(0)ˆ( )f . 
Stated symbolically, ∆Y  = θ(0)ˆ( )f .

To start Newton’s method requires an initial “guesstimate” or provisional estimate 
(θ(0)ˆ ) of the maximum’s location, and we stop when ∆Y  = 0. That is, we stop when the 
opposite leg has zero length—we have found the maximum of the function. The equality 
“ ∆Y  = 0” means that ∆Y  = 0 is true to some desired degree of accuracy.

To improve the initial estimate, θ(0)ˆ , requires knowledge of a few facts:

1.	 The tangent (tan) of an angle, ω , is equal to the ratio of the opposite leg over the 
adjacent leg. Thus, tan(ω ) = opposite leg

adjacent leg
. 

2.	 The first derivative of a function is the slope of a line tangent to the function and 
is symbolized as ′( )f x .

3.	 The line that is tangent to the function in Figure A.3 is the triangle’s hypotenuse 
with slope ∆ ∆Y X .

4.	 The point at which the tangent line crosses the abscissa defines the length of the 
adjacent leg, ∆X , or ∆X  = (θ(0)ˆ  –θ(1)ˆ ).

Given Fact #1 and that ∆Y  = “opposite leg” and ∆X  = “adjacent leg,” this means 
that

	 tan(ω ) =
opposite leg

adjacent leg
 =

∆
∆

Y

X

Therefore, tan(ω ) is the slope of the line tangent to the function, and given Fact #3, we 
know that this tangent line is the right triangle’s hypotenuse. Combining Facts #1–#4, 
recalling that ∆Y  = θ(0)ˆ( )f , and by substitution, one has that

	 tan(ω ) = slope = θ′ (0)ˆ( )f  = 
∆
∆

Y

X
 =

θ
θ θ

(0)

(0) (1)ˆ –

ˆ( )
ˆ

f
	 (A.3)

Solving for (isolating) θ(1)ˆ  yields

	 θ(1)ˆ  = θ(0)ˆ  – 
θ
θ′

(0)

(0)

ˆ( )
ˆ( ) 

f

f
.	 (A.4)

Stated in words, Equation A.4 says that the value θ(0)ˆ  may be improved upon by 
projecting the tangent line from the point θ(0)ˆ( )f  toward the abscissa (i.e., from Fact 
#2 we know that the tangent line is the first derivative at θ(0)ˆ ). The tangent line’s point 
of intersection with the abscissa produces a new estimate, θ(1)ˆ . The change from θ(0)ˆ

 
to the new θ̂  is ∆X  (i.e., ∆X  = (θ(0)ˆ  –θ(1)ˆ )). A single application of Equation A.4 to 
improve θ(0)ˆ  is one step or iteration. After conducting one iteration we may or may not 
be at the location of the maximum of the log likelihood function. However, Equation A.4 
may be reapplied to “construct” a (we hope smaller) new right triangle using θ(1)ˆ  in lieu 
of θ(0)ˆ  (e.g., the hypotenuse of this new right triangle would be line (b) in Figure A.2).
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This idea of conducting multiple iterations may be symbolized by rewriting Equa-
tion A.4 as

	 θ +(t 1)ˆ  = θ(t)ˆ – 
θ
θ′

(t)

(t)

ˆ( )
ˆ( ) 

f

f
	 (A.5)

where t stands for the tth iteration and T is the maximum number of iterations (i.e., 
t = 1 ... T). Equation A.5 says that we can improve the tth estimate of the location of 

the maximum by changing it by an amount equal to 
θ

θ′

(t)

(t)

ˆ( )
ˆ( )

f
f . As mentioned 

above, when ∆Y  = 0 (i.e., θ(t)ˆ( )f = 0), then the location of the maximum has been 
found and is our θ̂ . Stated another way, we have found the maximum when the step 

size 
θ

θ′

(t)

(t)

ˆ( )
ˆ( )

f
f  = 0 or, alternatively, θ(t+1)ˆ  =θ(t)ˆ . Therefore, after calculating θ(t+1)ˆ

we check to see if θ(t+1)ˆ  =θ(t)ˆ . If the answer is “yes,” then the iterations stop because we 
have found the location of the maximum; the location is θ(t+1)ˆ . However, if the answer 
is “no,” then we can improve the current estimate by calculating a new step size. In 
effect, we refine our estimate of the location of the maximum by stepping along the log 

likelihood function in steps of size 
θ

θ′

(0)

(0)

ˆ( )
ˆ( )

f
f

. If the function is well behaved (e.g., 

it is not flat), then the step size becomes progressively smaller as the iterations proceed. 
The signs of θ(t)ˆ( )f  and ′( )f x  do not have to be the same.3

Because of how decimal values are represented on a computer it is difficult to test 
for an equality (e.g., θ(t+1)ˆ  = θ(t)ˆ  or θ(t)ˆ( )f  = 0). Therefore, the difference between suc-
cessive θ̂s  (i.e., (θ(t+1)ˆ  – θ(t)ˆ )) is checked to see if the θ̂s  are “indistinguishable” from 
one another. If they are indistinguishable, then the process is said to have converged and 
we have determined the location of the maximum. What is considered indistinguish-
able (i.e., what defines a “zero” change) is given by the convergence criterion (e.g., Ξ  = 
0.001). Therefore, when (θ(t+1)ˆ  – θ(t)ˆ ) < Ξ  is true, then we have a converged solution, 
θ +(t 1)ˆ  is the estimate of location of the maximum, and convergence is achieved in t+1 
iterations. However, when (θ(t+1)ˆ  – θ(t)ˆ ) > Ξ , then we do not have a converged solution 
and another iteration is performed. How many iterations one performs depends on the 
maximum number of iterations, T (e.g., T = 25). As a result, there are two criteria that 
must be met before another iteration is performed (i.e., (θ(t+1)ˆ  – θ(t)ˆ ) > Ξ  and t < T). If 
(θ(t+1)ˆ  – θ(t)ˆ ) > Ξ  and if t equals T, then the estimation process stops even though it has 
not converged, and we have a nonconverged solution.

In applying Newton’s method to IRT the function of interest is the log likelihood 
function. That is, the function θ(t)ˆ( )f  that is set to 0 is the first derivative of the lnL 

function, θ(t)ˆ( )f  = θ
θ
∂

∂
ln ( | )L x . Therefore, the maximum of the log likelihood func-

tion is found (if it exists) when

	 θ
θ
∂

∂
ln ( | )L x  = 0	 (A.6)

is true.
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If we look at the form of the step size in Equation A.5, we see that it has the form 

of a ratio of a function to its derivative (i.e., 
θ

θ′

(t)

(t)

ˆ( )
ˆ( )

f
f

). In the IRT case, θ(t)ˆ( )f  is 

the first derivative of lnL. As a result, the step size is equal to the first derivative over 
its derivative (i.e., the second derivative). Therefore, with respect to θ , the step size is

	
θ
θ′

(t)

(t)

ˆ( )
ˆ( )

f

f
 = 

θ
θ

θ
θ

∂
∂
∂

∂

2

2

ln ( | )

ln ( | )

L

L

x

x

 	 (A.7)

By substituting Equation A.7 into Equation A.5, our formula for improving our estimate 
of the location of the maximum of person i’s log likelihood function becomes

	 θ +(t 1)ˆ
i  = θ(t)ˆ

i – 
θ

θ

θ
θ

∂
∂
∂

∂

t

2
t

2

ln ( | )

ln ( | )

i

i

L

L

x

x

.	 (A.8) 

The equations for θ
θ
∂

∂
tln ( | )iL x  and θ

θ
∂

∂

2
t

2
ln ( | )iL x  vary from model to model. 

The simplest forms of these belong to the Rasch model. Therefore, as an example of 
applying Newton’s method to IRT, the Rasch model is used.

For the Rasch model the tth iteration of the derivatives are (cf. Hambleton & Swami-
nathan, 1985; Wright & Stone, 1979)

	 θ
θ
∂

∂
tln ( | )iL x  = 

=
− ∑

L
(t)

1
i ij

j

X p 	 (A.9)

and

	 θ
θ
∂

∂

2
t

2
ln ( | )iL x  = 

=
− −∑

L
(t) (t)

1

(1 )ij ij
j

p p ,	 (A.10)

where ijp  is the probability of a response of 1 on item j by person i according to Equation 
2.2. By substitution of these identities into Equation A.8 we have

	 θ +(t 1)ˆ
i  = θ(t)ˆ

i  – 
=

=

−

− −

∑

∑

L
(t)

1

L
(t) (t)

1

(1 )

i ij
j

ij ij
j

X p

p p

.	 (A.11)

Equation A.11 is applied until we have a converged solution or we reach the maximum 
number of iterations with θ +(t 1)ˆ

i  value as our estimate of person i’s location, θ̂i . If our 
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solution converges, then our θ̂  is the location of the maximum of the log likelihood 
function (i.e., θ̂  maximizes the likelihood of obtaining the response pattern).

Focusing on the numerator of the step size, 
=

− ∑
L

(t)

1
i ij

j

X p , we see that it has the form 

of an observed score, iX , minus the expected (trait) score (
=
∑
L

(t)

1
ij

j

p ); the expected score 

is based on the provisional estimate of the person’s location (θ(0)ˆ
i ), the item parameters, 

and the model. In effect, the estimation tries to minimize the difference between what 
one would expect or predict on the basis of the model and what is observed. We can also 
see from the numerator that there is no information about the pattern of 0s and 1s in 
person i’s response vector. The estimation of θ  is driven solely by trying to modify θ  

to make 
=
∑
L

(t)

1
ij

j

p  as close a match as possible to the observed score, iX . The denominator 

of the step size is the sum of the predicted item variances. In the foregoing it is assumed 
that the δ j s are known. (Given that our interpretation of the numerator of Equation 
A.11 is similar to that of the numerator of the chi-square statistic, it is not surprising 
that there is an alternative estimation method based on the chi-square statistic (Berk-
son, 1944, 1955; Baker, 1991).)

As an example, assume that we are interested in estimating the θ  that has the 
highest likelihood of producing the pattern 11000 (Table A.1). Moreover, assume that 
our item locations are δ1  = –1.9000, δ2 = –0.6000, δ3 = –0.2500, δ4 = 0.3000, and δ5  = 
0.4500. Our convergence criterion is 0.0001. To start our estimation we need an initial 
guesstimate as to where the function has its maximum. There are various ways of pro-
viding this guesstimate. For example, we could assume that the individuals who pro-
duce this pattern 11000 are of average proficiency, and therefore the initial guesstimate 
would be θ(0)ˆ  = 0.0. Alternatively, we can take test performance into account in making 
our guesstimate. For instance, we can convert X into its corresponding z-score or it may 
be transformed into a logit correct by ln(X/(L – X)) (Wright & Stone, 1979).

Using this latter approach our guesstimate for X = 2 would be θ(0)ˆ  = ln(2/(5 – 2)) = 
–0.40546510811. Given this θ(0)ˆ  we calculate the first and second derivatives (columns 

TABLE A.1. MLE Iteration History for Solving θ
θ
∂

∂
ln (11000| )L  = 0

It
er

a
ti
o
n

θ ( )ˆ t θ
θ
∂

∂
(t)ln (x | )L θ

θ
∂

∂

2
(t)

2 ln (x | )L
Step size θ +(t 1)ˆ

1 –0.40546510811 –0.45534004562 –1.07642581519 0.42301107907 –0.82847618718

2 –0.82847618718 –0.00955017713 –1.02205392943 0.00934410294 –0.83782029012

3 –0.83782029012 –0.00000834401 –1.02026427006 0.00000817828 –0.83782846840

4 –0.83782846840 –0.00000000001 –1.02026269393 0.00000000001 –0.83782846841
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3 and 4) as well as their ratio (column 5, labeled “Step size,” Equation A.7). As indicated 
in Equation A.11 this step size is subtracted from θ(0)ˆ  to produce an improved esti-
mate, θ +(t 1)ˆ , shown in column 6 (e.g., θ(1)ˆ  = –0.82847618718). In iteration 2 this θ(1)ˆ  
is improved upon by recalculating the values of the first and second derivatives, form-
ing a new step size, and producing a new improved estimate, θ(2)ˆ  = –0.83782029012. 
These steps are repeated for the remaining iterations. Because iteration 3’s step size of 
0.00000817828 is less than our convergence criterion, we have a converged solution and 
the estimation process stops. The θ̂  after the third iteration, θ(3)ˆ  = –0.83782846840, 
would be our final estimate of the location of the maximum of lnL(x = 11000); that is, 
θ̂  = –0.8378.4 For a pedagogical reason we perform a fourth iteration to show how little 
change there is from iteration 3’s results. Figure A.4 contains a graphical representation 
of the steps shown in Table A.1.

As mentioned above, one advantage of the Newton method over the empirical MLE 
is the ability to obtain the sample standard error of estimate. The standard error of θ̂  is

	 θ̂( )es  = α
=

−∑
L

2

1

1

(1 )j j
j

p p ,	 (A.12)

where for the Rasch model α  equals 1 and jp  is conditional on θ̂ . To calculate jp  
one uses the final θ̂  and the item parameters. As can be seen from Equation A.12, the 
magnitude of the standard error of θ̂  is influenced, in part, by the instrument’s length. 
For this example the standard error for θ̂  = –0.8378 is 0.9900. This value of almost 1 

FIGURE A.4.  Graphical representation of MLE for the pattern 11000.
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logit may be considered on the large side. Its magnitude is due, in part, to the use of five 
items, the items’ locations, and the location of the person’s estimate with respect to the 
items’ location (i.e., this θ̂  falls in a gap between δ1  and δ2 ).

In general, a standard error of estimate consists of two components. The first com-
ponent is the bias in the estimate (i.e., the signed difference between the parameter and 
its estimate), whereas the second component is the mean squared error (MSE) in the 
estimate (i.e., the unsigned squared difference between the parameter and its estimate); 
the root mean squared error (RMSE) is the square root of the MSE. The relationship 
between SEE, MSE, and bias is

	 = − 2
es MSE bias 	 (A.13)

R FUNCTION FOR MLE OF θθ WITH THE RASCH MODEL

As a pedagogical tool we provide an R function that will estimate θ  given item location 
parameters and a person response vector x . In addition to estimating θ , it graphically 
displays the corresponding lnL function. Table A.2 shows the code. To use the function 
we provide values for x  and delta (i.e., δ sj ). For example,

delta=seq(-2,2,1) 			   # 5 items located at –2, –1, 0, 1, 2
x = c(1,1,0,0,0)
Raschthetahat_SE(x,delta)

For this example response vector our θ̂  = –0.591 with a θ̂( )es  = 1.096. (Note: these item 
locations are not the same as those used in Table A.1 example.) If we repeatedly call 
Raschthetahat _ SE passing to it one of the response vectors associated with X = 1, 
followed by one of the response vectors corresponding to a X = 2, and so on up to X = 
4 we see the lnL starting on the left side of the continuum and progressing towards the 
right side with the corresponding maximum locations moving up the continuum.

REVISITING ZERO VARIANCE BINARY RESPONSE PATTERNS

Figure 2.8 shows the log likelihood for a perfect response pattern, 11111. This pattern 
as well as the pattern 00000 have zero response variability. From Figure 2.8 we see the 
function’s trajectory becoming asymptotic as θ  increases and, for all intents, the func-
tion becomes relatively flat. Therefore, Equation A.8’s step size does not decrease and 
the θ̂  will “drift off” toward infinity. Mathematically, the numerator of the step size in 

Equation A.11 equals 0 only when ijp  = 1 for all items (i.e., iX  = 
=

− ∑
L

(t)

1
i ij

j

X p ). However, 

ijp  equals 1 only for an infinitely large θ̂ . Therefore, the use of Newton’s method for 
estimating θ  does not provide finite estimates for zero or perfect scores. (The lnL for X 
= 0 would be the mirror image of the lnL presented in Figure 2.8.)

10	 Appendix A	



TABLE A.2. R Function for MLE of θ  Based on the Rasch Model

Raschthetahat_SE=function(x,delta) {
# arguments: x – person response vector
#                (needed only for plot.  without plot pass only obs scr X & delete
#                 calculation of the observed score within the funciton)
#            delta – vector containing as many item locations as there are 
#                    responses in x
# Call: Raschthetahat_SE(x,delta)

# for plot: set abscissa to have 9 tick marks, ordinate to have 5, &
#           character labels to be 2
   par(lab=c(9,5,2))

# general initializations for Rasch person estimation
   maxit=20       # maximum number of iterations allowed; in the text this is ‘T’
   ccrit=0.001    # convergence criterion
   L = length(x)  # nitems
   
   X = sum(x)     # calc observed score

# To mimic the typical MLE implementation uncomment the follow if statement.
# Deal w/ zero variance response vectors; change X = 0 to be X = 0.5 & 
#     change X= L to be X = L -0.5.  The resulting person location estimates are
#     not MLEs, but pseudo MLEs.
#   if(X==0) {
#      X=0.5
#   } else {
#      if (X==L) {
#         X=L-0.5
#      }
#   }

# t_est is theta hat; “log” in R is the “ln” function
   t_est=log(X/(L-X))  	 # initial value for t_est (theta hat null)
 
# estimation  (only need X, not x)
   it = 1
   converged = FALSE

   while ((it <= maxit) & (! converged)) {
     expctdX = 0.0
     expctdVar = 0.0
     for (j in 1:L) {
        p = 1/(1+exp(-1.0*(t_est-delta[j])))
        expctdX = expctdX + p	# Equation A.9
        expctdVar = expctdVar + (1-p)*p	 # Essentially Equation A.10
     }  # for j loop

     step=(X - expctdX)/-expctdVar

     t_est=t_est – step	 # Equation A.5

# To see the iteration table uncomment the following two lines    
#    if (it==1) {print('iteration  pre_t        1st      2nd          step 
                post_t') }
#   cat(sprintf("%12.d %10.5f %10.5f %10.5f %10.5f %10.5f",it,(t_est+step), (X -  
                 expctdX),(-expctdVar),step,t_est),"\n") 

(continued)
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In a software MLE implementation one will obtain a faux θ̂  for zero variance 
response vector. This faux θ̂  is not the location of the maximum, but an artifact of a 
convergence criterion that is “too liberal” relative to the lnL’s asymptotic nature. This 
is easily demonstrated using the Raschthetahat _ SE function; maxit should be 
set to a large value. By increasing the desired precision of θ̂  (e.g., changing ccrit to 
be 0.00001, then 0.000001, etc.) one finds the faux θ̂  drifting towards extreme values.

NOTES

1.  Both the empirical MLE and Newton’s method for MLE are predicated on the assumption 
that the likelihood function’s shape is determined by some unknown parameter, θ .

2.  This method is also referred to as Newton–Raphson. Newton’s method was developed 
about 1669 and, apparently, Raphson independently developed a simplified version of Newton’s 
method in 1690 (Gautschi, 1997). Therefore, this method is typically referred to as Newton–
Raphson, although some (e.g., Gerald & Wheatley, 1984; Gautschi, 1997) refer to it as Newton’s 

TABLE A.2.  (continued)

     converged = abs(step) < ccrit	 # is stepsize < convergence criterion?

# if we have converged or we have reached the maximum of iterations, calc Std Error
     if (converged | it == maxit) {
        se = 1/sqrt(expctdVar) 	 # Equation A.12
       }

     it = it + 1
   }  # while it & step loop

# produce lnL plot
   mintheta=-4.0;  maxtheta=4.0;  incr=0.1   # initializations
   nvals=(abs(mintheta)+abs(maxtheta))/incr+1
   t = seq(mintheta, maxtheta, incr)
   lnL = rep(0.0, nvals)

   for (k in 1:nvals) {
      lnLike = 0.0
      for (j in 1:L) {
         p = 1/(1+exp(-1.0*(t[k]-delta[j])))
         lnLike = lnLike + x[j]*log(p) + (1-x[j])*log(1 - p)
      }  # for j loop
     lnL[k] = lnLike
    }  # for k loop

   cat(plot(t,lnL,xlab="theta",type="l",ylab="lnL",xlim=c(mintheta,maxtheta)),"\n")

   cat(paste("theta est",t_est,"\n"))
   cat(paste("SEE",se,"\n"))
   cat(paste("Converged ",converged,"\n"))

   Raschthetahat_SE =c(t_est,se)
}
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method. However, both Newton’s and Raphson’s algorithms were algebraic and did not involve 
derivatives (Gautschi, 1997). Simpson in 1740 (cited in Gautschi, 1997) introduced the calculus 
description to Newton’s method, and the modern version of Newton’s approach seems to have 
appeared first in a paper by Fourier in 1831 (Gautschi, 1997).

3.  The slope is equal to zero whenever a function has a maximum or a minimum. The sign 

of the second derivative, ′′( )f x = θ
θ
∂

∂

2

2 ln ( | )L x , indicates whether a minimum or a maximum 

at θ  has been obtained. Specifically, if ′′( )f x < 0.0, then it is a maximum. However, a given 
function may have multiple maxima/minima as well as local maxima/minima. Local and mul-
tiple maxima/minima arise when the function has multiple bends rather than a single bend as 
shown in Figure A.2. A local maximum (or minimum) occurs when a location is found at which 
the slope of the function is 0, but this location does not correspond to the highest point on the 
function. For example, imagine a function that is increasing, reaches a crest, bends downward 
into a valley, and then bends upward out of the valley to a second crest that is higher than the 
first crest. The first crest would be a local maximum and the second would be the function’s true 
maximum; the floor of the valley would be a minimum. Evidence about whether the solution is at 
a local maximum/minimum rather than at a true maximum/minimum may be obtained by using 
different initial starting estimates. If the various solutions produce the same estimate, then most 
likely a true maximum has been found.

4.  If the standard score of X  = 2 had been used as the θ(0)ˆ , the results would still have 
converged in three iterations and θ(3)ˆ  = –0.83782846841.
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In Appendix A we discuss the logic and mathematics of Newton’s method for locating 
the maximum of the lnL as well as demonstrate Newton’s method for estimating a per-
son’s location. In this appendix we assume the reader is familiar with Newton’s method 
and show its use to estimate an item’s location, δ . Analogous to what is done in the esti-
mation of person locations in Appendix A, we assume that the persons’ θs  are known.

In estimating a person’s location with the 1PL model, the data in Table 2.1 are 
reduced to six rows (X = 0, 1, ..., 5) and only the row totals for four observed scores (X = 
1, 2, 3, 4) provide information for estimating θ  using MLE. Similarly, in estimating an 
item’s location it is not the pattern of 1s and 0s on the item, but the item score (i.e., the 
item total), jq , for item j that provides all the information needed for estimating its δ  
(cf. Rasch, 1980). (The pattern of responses to an item is also ignored in calculating the 
traditional item difficulty index [i.e., an item’s P-value, jP ].) Accordingly, the item score 

jq  embodies all the information for estimating the item’s location and is a sufficient 
statistic for estimating δ j .

Conceptually, the likelihood function for an item specifies the likelihood of observ-
ing a particular jq , given the possible values of δ . For instance, how likely is it that 
13,319 individuals got item 1 correct if the item is located at –3.0, or if it is located 
at –2.9, or at 3.0? As is the case with estimating person locations and zero variance 
response vectors, if jq  = 0 or jq  = N, then the likelihood function does not have a maxi-
mum and there is no finite estimate of the item’s δ . Stated another way, if jq  = 0, then 
δ j  = ∞ , and if jq  = N, then δ j  = −∞ . In principle, the likelihood function for an item 
would be obtained in a way similar to the way it is obtained for estimating a person’s 
location. However, a logarithmic transformation of L is typically performed to produce 
a log likelihood function, lnL (e.g., see Equation A.2).

The application of Newton’s method in Appendix A produced an equation that 
allowed one to successively refine the location estimate of the maximum of the lnL (see 
Equation A.8). Applying Newton’s method to obtain the δ̂  involves making the appro-
priate substitutions for the first and second derivatives of the log likelihood function 
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with respect to δ  into Equation A.8. These derivatives may be found in the literature 
(e.g., Baker & Kim, 2004; Hambleton & Swaminathan, 1985; Wright & Stone, 1979). 
Upon making these substitutions into Equation A.8 we have an equation to obtain an 
improved δ̂ j  for the jth item at the (t + 1) iteration

	 δ +(t 1)ˆ
j  = δ (t)ˆ

j – 
δ
δ′

(t)

(t)

ˆ( )
ˆ( )

j

j

f

f
 = δ (t)ˆ

j – 
δ

δ

δ
δ

∂
∂
∂

∂

t

2
t

2

ln ( | )

ln ( | )

j

j

L

L

x

x

	 (B.1)

Because the derivatives in Equation B.1 are with respect to δ , they are different from 
those seen in Appendix A, Equations A.9 and A.10. Specifically, we have

	 δ
δ
∂

∂
tln ( | )jL x  = 

=
− + ∑

N
(t)

1
j ij

i

q p

and

	 δ
δ
∂

∂

2
t

2
ln ( | )jL x  = 

=
− −∑

N
(t) (t)

1

(1 )ij ij
i

p p .

Therefore, upon substitution of these derivatives into Equation B.1 one obtains
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=
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	 (B.2)

As is the case with estimating person location via MLE, the numerator reflects a 
difference between the observed item score (the number of responses of 1 on the item) 
and the expected/predicted score for the item based on the provisional δ̂ j , the known 
θs , and the model. We see that the numerator does not contain any information about 
the pattern of 0s and 1s in item j’s response vector. As a result, the estimation of δ  is 
driven solely by trying to modify δ̂  to make ∑ ijp  as close a match as possible to the 
item score jq . In obtaining a solution one seeks to minimize this discrepancy by itera-
tively improving the δ̂ j s until (δ +(t 1)ˆ

j  – δ (t)ˆ
j ) < Ξ , where Ξ  is the convergence crite-

rion. In addition to Ξ , one typically has a maximum number of iterations that can be 
executed as a stop-gap criterion. Therefore, our estimation continues until either Ξ  is 
satisfied or we reach the maximum number of iterations.

Strictly speaking, because δ  is unknown it is not possible to calculate ijp . How-
ever, the tth provisional estimate of δ  is treated as known in order to calculate an esti-
mate of ijp  in Equation B.2. In addition, for purposes of estimation, and because all 
persons with the same observed score have the same θ , we can approximate ∑ ijp  by

	
−

=
∑
L 1

1
X Xj

X

n p

where Xn  is the number of persons obtaining an observed score of X. (Because X = 0 
and X = L do not produce finite estimates they are omitted from the summation and 
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the sum runs from 1 to L – 1, not from 0 to L.) Therefore, in implementations of the  

Newton method ∑ ijp  is replaced by 
−

=
∑
L 1

1
X Xj

X

n p  and 
=

−∑
N

(t) (t)

1

(1 )ij ij
i

p p  is replaced by 

=
−∑

L-1
(t) (t)

1

(1 )X ij ij
X

n p p .

Newton’s method converges more quickly if one starts in the neighborhood of the 
final solution. A starting location can be obtained by transforming the item scores to 
their corresponding standard scores or by using a modified logit incorrect (Wright & 
Stone, 1979)

	 δ (0)ˆ
j  = 

 −
 
 

N
ln

j

j

q

q
 – ln L

 −
 
 

∑
L N j

j

q

q
 	 (B.3)

The first term is essentially a logit incorrect (i.e., the number of responses of 0 over the 
number of responses of 1), whereas the second term is its average across items. There-
fore, Equation B.3 provides a “centered” starting value. These provisional estimates have 
a mean of 0.

We use the first item on our example’s mathematics test (Chapter 2) to demonstrate 
the MLE of an item location. As mentioned above, the person locations are assumed 
to be known. For this example, we obtain our provisional person location estimates 
by using ln(X/(L – X)); see Appendix A. Therefore, for persons with an X = 1 our θ1  is 
–1.38629, for X = 2 our θ2  = –0.40547, for X = 3 our θ3  = 0.40547, and for X = 4 our θ4  
= 1. 38629. Table B.1 contains the MLE iteration history. The convergence criterion is set 
to 0.0001 (i.e., Ξ  = 0.0001). We see that convergence is achieved on the fourth iteration. 
Our MLE estimate of item 1’s location is δ1

ˆ  = –2.044. The accuracy of this estimate can 
be ascertained via its standard error, δ̂( )es

	 δ̂( )es  = −

=
−∑

L 1

1

1

(1 )X Xj Xj
X

n p p
 	 (B.4)

By using the δ1
ˆ  obtained from the last iteration in Equation B.4, our sample standard 

error for δ1
ˆ , δ1

ˆ( )es , is 0.0242. (As is the case for estimation of person locations one can 

TABLE B.1.  MLE Iteration History for Solving lnL

It
er

a
ti
o
n

δ ( )ˆ t
j

δ
δ
∂

∂
( )ln (x | )tL δ

δ
∂

∂

2
( )

2 ln (x | )t
j

j

L
Step size δ +( 1)ˆ t

j

1 –0.827790295 –2782.277903 –2816.302721 0.987918622 –1.815708917

2 –1.815708917 –414.1668931 –1928.518792 0.214759065 –2.030467982

3 –2.030467982 –22.95006925 –1715.301008 0.013379616 –2.043847599

4 –2.043847599 –0.087983322 –1702.153013 5.16894E–05 –2.043899288
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talk about the amount of information a sample provides for estimating an item’s location 
by taking the square of the reciprocal of Equation B.4.)

Table B.2 shows the results of applying the above procedure to the remaining items 
on the instrument with the values also being mean centered to address indeterminacy 
of scale. As can be seen, our items are located throughout the continuum ranging from 
roughly 2 logits below 0 to 1.4 logits above 0. Our standard errors are on the order of 
two one-hundredths or less indicating reasonably accurate item location estimates. We 
should note that these item location estimates should not be interpreted in an absolute 
sense. That is, if we estimate these item locations with a different sample of examinees, 
we would most likely obtain a different set of estimates that, assuming model–data fit, 
would be highly linearly related to the estimates in Table B.2. This issue is discussed in 
Chapter 3 in the section entitled “Indeterminacy of Parameter Estimates.”

R FUNCTION FOR MLE OF δ  WITH THE RASCH MODEL

As a pedagogical tool we provide an R function that will estimate δ . In addition to esti-
mating δ , it graphically displays the corresponding lnL function. Table B.3 shows the 
code. To use the function we provide the data file and the item of interest. For example, 
for item 2 we would call the function

RaschItem_SE(mathdata,2)

TABLE B.2.  MLE δ̂ s  and Corresponding SEEs 
for the Five-Item Instrument

Item δ̂ δ̂( )es Number of iterations

Uncentered

1 –2.0438 0.0242 4

2 –0.1648 0.0179 3

3   0.3208 0.0178 3

4   1.2477 0.0195 4

5   1.5579 0.0206 4

Centered

1 –2.2274 0.0242 4

2 –0.3484 0.0179 3

3   0.1373 0.0178 3

4   1.0641 0.0195 4

5   1.3744 0.0206 4
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TABLE B.3. R Function for MLE of δ  Based on the Rasch Model

RaschItem_SE=function(x,item) {
# arguments: x - response data matrix
#                (needed only for plot.  without plot pass only item scr q & delete
#                 calculation of the item score within the function)
#            item - item of interest

# Call: RaschItem_SE(x,item)
  
  
# for plot: set abscissa to have 9 tick marks, ordinate to have 5, &
#           character labels to be 3
  par(lab=c(9,5,3))
  
  
# general initializations for Rasch person estimation
  maxit=20L	 # maxiterations as an integer
  ccrit=0.001 	# convergence criterion
  N = length(x[,item])	# n persons
  L = length(x[1,])	 # Length: # of items
  L_1 = L -1
  
  q = as.integer(colSums(x))	 # calc item score
  X=rowSums(x)	# calc observed scores, X
  
  nX = as.integer(table(X))	 # frequency of each obs.  score
  adjustment = nX[1]+nX[L+1]	 # remove zero response vectors
  
  t_est=rep(-99.9, L_1)	 # determine provisional person estimates
  for (i in 1:L_1) {  
       t_est[i]=log(i/(L-i))   
  }
  
  Nadj= N - adjustment
  delta_est=0.0	 # determine initial value for delta_est; Equation B.3
  for (j in 1:L) {
    q[j] = q[j] - adjustment
    delta_est = delta_est + log((Nadj-q[j])/q[j])
  }
 delta_est=log((N-q[item])/q[item]) - delta_est/L  
  
# estimation 
  it = 1  
  converged = FALSE
  
  while ((it <= maxit) & (! converged) ) {
    expctdq = 0.0
    expctdVar = 0.0
    for (i in 1:L_1) {        # offset due to X being 0-based & indexing is 1-based
      p = 1/(1+exp(-1.0*(t_est[i]- delta_est)))
      expctdq = expctdq + nX[i+1]*p         # essentially numerator of Equation B.2
      expctdVar = expctdVar + nX[i+1]*p*(1-p)   # essentially denominator of Eq B.2
    }  # for j loop
    
    expctdq = expctdq - q[item]

    step=expctdq/-expctdVar

(continued)
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TABLE B.3.  (continued)

    delta_est =delta_est  - step	 # Equation B.2
      expctdVar = expctdVar + nX[i+1]*p*(1-p)   # essentially denominator of Eq B.2
    }  # for j loop
    
    expctdq = expctdq - q[item]

    step=expctdq/-expctdVar
    
    delta_est =delta_est  - step	 # Equation B.2
# To see the iteration table uncomment the following two lines    
#   if (it==1) {print('iteration  pre_d        1st          2nd          step 
                      post_d') }
#   cat(sprintf("%12.d  %10.5f %12.5f %12.5f %10.5f %10.5f",it,(delta_est+step),  
                expctdq, (-expctdVar),step,delta_est),"\n")

    converged = abs(step) < ccrit
    
    if (converged | it == maxit) {
      se = 1/sqrt(expctdVar)     }	 # essentially Equation B.4
    
    it = it + 1
  }  # while it & step loop
  
  
# produce lnL plot
  maxdelta = 4.0;  mindelta= -4.0; incr = 0.1	 # initializations
  nvals=((abs(maxdelta)+abs(mindelta))/incr+1)
  lnL = rep(0.0,nvals)
  delta = seq(mindelta,maxdelta,incr)
  
  t_est=rep(-99.9, Nadj)
  u=rep(-99.9,Nadj)
  
  k = 1  
  for (i in 1:N) {
    if((X[i]>0) & (X[i] < L)) {	 # remove zero variance response vectors
       t_est[k]=log(X[i]/(L-X[i]))
       u[k]=x[i,item]  
       k = k + 1  
    }   # if     
  }  # for i

  for (k in 1:nvals) {
    lnLike = 0.0
    
    for (i in 1:Nadj) {
      p = 1/(1+exp(-1.0*(t_est[i]-delta[k])))
      lnLike = lnLike + u[i]*log(p) + (1-u[i])*log(1 - p)
    }  # for i loop
    
    lnL[k] = lnLike
    
}  # for k loop  

(continued)
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The result of our call yields δ2
ˆ  = –2.0438 ( δ2

ˆ( )es  = 0.0242) with its lnL function shown 
in Figure B.1. If we repeatedly call RaschItem _ SE passing to it each successive item 
we obtain the uncentered estimates shown in Table B.2 (top panel).

The processes shown in Appendices A and B form the foundation of the joint maxi-
mum likelihood estimation (JMLE) algorithm. In the JMLE context (Chapter 3) the 
item locations would be estimated before persons. The resulting centered δ̂s  would be 
used to estimate the θ̂s  (see Appendix A) and cycle 1 ends. In the subsequent cycle the 
θ̂s  would be used in lieu of the provisional ones to re-estimate the δ̂s . These improved 
δ̂s  would then be used to re-estimate the θ̂s  and cycle 2 ends. Cycle 3 would use the 
improved θ̂s  to re-estimate the δ̂s  and the improved δ̂s  would be used to re-estimate 
the θ̂s. These cycles continue until the change between successive cycles’ δ̂s  and suc-
cessive cycles’ θ̂s  are less than the convergence criterion.

TABLE B.3.  (continued)

  cat(plot(delta,lnL,main=paste("item ",item), xlab="delta", type="l", ylab="lnL",  
        xlim=c(mindelta,maxdelta)),”\n”)
  
  cat(paste("delta est",delta_est,"\n"))
  cat(paste("SEE",se,"\n"))
cat(paste("Converged ",converged,"\n"))
  
  RaschItem_SE=c(delta_est,se)
}

FIGURE B.1.  lnL for item 2.
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CONCEPTUAL DEVELOPMENT OF THE NORMAL OGIVE MODEL

Our conceptual development of the IRT normal ogive model begins with a discussion of 
the relationship between the observed 0/1 responses and the variable being measured. 
In the current context, the latent variable of interest (e.g., neuroticism, narcissism, 
mathematics proficiency) is measured by asking a series of questions. The responses to 
these questions are transformed to be a 0 or a 1. For instance, a person may be asked, 
“Given X = 3 + 5, what is the value of X?” In this case, the individual’s response is coded 
as 1 if the response is 8, otherwise it is coded to 0.

One may ask, “How does the 0/1 “response’ on an item relate to the latent variable 
being measured?” To answer this question assume that a continuous latent variable, 
Ω j , determines an individual’s response to an item j. Large values of this item latent 
variable Ω j  indicate a greater tendency to produce a response ( jx ) of 1 than do smaller 
values. This continuous variable is dichotomized at some point, τ j , such that at and 
above this point the continuous latent variable’s values are recoded as a 1, and below 
which they are recoded as a 0. For example, in Figure C.1 person 1 is located ( µ1 j ) 
beyond item j’s cutpoint (threshold, τ j ). Therefore, the shaded area under the function 
beyond the cutpoint is the probability (π1 j ) of a response of 1 to item j by person 1. The 
unshaded portion gives the probability of a response of 0 to this item by this person. 
This is the mechanism by which the observed 0/1 responses arise. Note that in contrast 
to a true dichotomy (i.e., a variable that has two mutually exclusive and jointly exhaus-
tive possibilities), the dichotomization of this continuous variable results in an artificial 
dichotomy.

How does the unobserved variable Ω j  that determines the performance on item j 
relate to the latent variable of interest, θ ? The latent variable Ω j  is a function of a com-
mon factor θ  across all the items on an instrument plus an error factor that is unique 
to item j (Lord, 1980). Moreover, the regression of Ω j  on θ  is linear (Lord & Novick, 
1968). Figure C.2 depicts this regression for item j using a standard simple linear regres-
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sion presentation. As can be seen, the conditional distributions of Ω j  for fixed (predic-
tor) values of θ  are assumed to be normally distributed with mean θµ |j  and variance 

θσ 2
|j ; because θσ 2

|j  is constant or homoscedastic across all conditional distributions it 
is symbolized as σ 2

j . Note that although we are assuming that the latent variable Ω j  
is normally distributed, we are not assuming that the people are normally distributed. 
That is, the continuous latent variable Ω j  reflects the distribution of the responses to 
item j by a person who is presented the item an infinite independent number of times.

FIGURE C.1.  Person 1’s location relative to item j’s cutpoint.

θ

jΩ

j|θµ

FIGURE C.2.  Regression of Ωj  on θ  for item j.
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Combining the ideas behind Figure C.1 with those underlying Figure C.2 results 
in Figure C.3. As we see, these two conditional distributions reflect different probabili-
ties of obtaining a response of 1 conditional on θ  and item j’s threshold. For a low θ  
value (i.e., the left conditional distribution) the item’s cutpoint results in an area that is 
substantially less than that for a higher θ  value (i.e., the right conditional distribution). 
This implies that the item discriminates across the θ  continuum and the degree of dis-
crimination is related to the slope of the regression line.

To find the probability of a response of 1 (π1 j ) for the right conditional (normal) 
distribution, one converts the τ j  to its corresponding z-score

	 τ j
z  = θτ µ

σ
− 1 |j j

j

	 (C.1)

and determines the area at and above τ j
z . For convenience the metrics for Ω j  and θ  are 

standardized so that their marginal distributions have means of 0 and standard devia-
tions of 1 (Lord, 1980). Consequently, one may use the standard unit normal distribu-
tion to determine the area that falls at and above τ j

z  (e.g., π1 j ).1 This area would be the 
probability of a response of 1 on item j conditional on θ . For instance, if τ j

z  = –1, then 
π1 j  = 0.84. In a similar fashion, the probability of a response of 1 for the left conditional 
distribution ( π2 j ) could be obtained. Assuming τ j

z  = 1 for this latter distribution, then 
π2 j  = 0.16. Thus, τ j

z  and τ j  are related to the difficulty of endorsing the item. Using 
the standard unit normal curve distribution to obtain these probabilities is tantamount 
to performing the integration from τ j

z  to ∞  under the unit normal distribution. This 
may be represented symbolically as

	 π =( 1)jx  = 
 τ

τ

π

∞  −
 
 ∫

2( )1
exp

22
j

j
z

z
dz .	 (C.2)

θ

jΩ 1 0.84jπ =

jτ

1jx =

0jx =

2 0.16jπ =

1 |j θµ
2 |j θµ

FIGURE C.3.  Regression of Ωj  on θ  and its relationship to item j’s cutpoint.
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Figure C.3 shows the regression line for predicting Ω j  from θ . Because Ω j  and θ  
have been standardized, the intercept equals 0 and the regression equation for predict-
ing Ω j  from θ  simplifies to

	 θµ′|ij  = ρ θj .	 (C.3)

Therefore, our regression coefficient equals the correlation, ρ j , between Ω j  and θ . 
Following Lord (1980), item j’s conditional standard deviation (the standard error) is  

θσ �j  = ρ− 21 j . By substitution of Equation C.3 and θσ �j  into Equation C.1, one obtains

	 τ j
z  = 

θτ µ
σ
− ′1 |j j

j

 = 
τ ρ θ

ρ

−

− 21

j j

j

	 (C.4)

Lord and Novick (1968) define item j’s discrimination parameter, α j , and its loca-
tion, δ j , in terms of the steepness of the regression line for predicting Ω j  from θ  and 
the conditional variability about this regression

	 α j

ρ

ρ
≡

− 21

j

j

 	 (C.5)

Because τ j  is related to the difficulty of endorsing an item and 
τ

ρ
j

j
 is the point on  

the continuum where the probability of a response of 1 is 0.5, item j’s location, δ j , is 
defined as

	 δ j  ≡ 
τ

ρ
j

j
.	 (C.6)

By substitution of Equations C.5 and C.6 into Equation C.4 one obtains, upon simplifi-
cation,

	 – τ j
z  = α δ θ−( )j j .	 (C.7)

That is, the location of item j’s standardized threshold that delimits the response of 1 
from that of 0 is a function of how well item j discriminates and its location on the latent 
variable of interest.

We can extend the idea embodied in Figure C.3 to a series of the conditional distri-
butions of Ω j . For each of these Equation C.2 can be used to calculate the probability 
of a response of 1 on item j. The graphing of these probabilities as a function of θ  would 
produce an S-shaped curve or an ogive (Figure C.4). These probabilities may be traced 
by the standard normal ogive function2

	 π =( 1)jx  = 
 π−∞

 −
 ∫

21 ( )
exp

22

z z
dz 	 (C.8)
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In the current context the z in Equation C.8 is replaced by τ j
z  (i.e., τ j

z  = –(– τ j
z )) 

so that by substitution of Equation C.7 into Equation C.8 one obtains the two-parameter 
normal ogive model (Lord, 1952)

	 π =( 1) = jx
 

α θ δ

π

−

−∞

 −
 ∫

( ) 21 ( )
exp

22

j j z
dz

 

α θ δ

π

−

−∞

 −
 ∫

( ) 21 ( )
exp

22

j j z
dz= 		  (C.9)

where α j  and δ j  are the discrimination and location parameters for item j, respectively. 
(We use π  instead of p to represent the probability from the two-parameter normal 
ogive.) It should be noted that the model in Equation C.9 does not make “any assump-
tion about the distribution of” θ  in the total group administered the instrument (Lord, 
1980, p. 32). As is the case with the 2PL model, the item is located at the point where the  

probability of a response is 0.5, because when θ  =δ j  the integral has the limits 
=

−∞
∫

0z

 and 

evaluates to 0.5. The term α j  is proportional to the slope of the IRF atδ j . (Specifically, 
the slope is α π2j .)3 In contrast to the use of the logit model (e.g., for the 2PL model), 
the model in Equation C.9 is a use of the probit model.4

Birnbaum (1968) modified the model in Equation C.9 to include a lower nonzero 
asymptote parameter, χ j , to address the observation that even “subjects of very low 
ability will sometimes give correct responses to multiple-choice items, just by chance” 
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FIGURE C.4. N ormal ogive with π1j  = 0.84 and π2j  = 0.16 overlaid.
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(Birnbaum, 1968, p. 404). This model is referred to as the three-parameter normal ogive 
model

	 π θ α δ χ=( 1 | , , , )j j j jx  = 
 

α θ δ

χ χ
π

−

−∞

 −
+ −  ∫

( ) 21 ( )
(1 ) exp

22

j j

j j
z

dz ,	 (C.10) 

where χ j  is the pseudo-guessing (lower asymptote) parameter. Because the slope under 
the three-parameter normal ogive model involves the pseudo-guessing parameter as the 
pseudo-guessing value increases the IRF’s slope decreases. (Specifically, the slope is  

α χ
π

−(1 )
2

j j ; Lord, 1975.) As is the case with the logistic models, one can obtain the 

one-parameter normal ogive model by fixing χ j  to zero and holding α j  constant across 
items.

THE RELATIONSHIP BETWEEN IRT STATISTICS  
AND TRADITIONAL ITEM ANALYSIS INDICES

In traditional item analysis the proportion of correct responses to an item is the item’s 
measure of difficulty. This proportion is typically referred to as the item’s P-value, jP , 
with large values indicating easy items and small jP  values reflecting difficult items. 
Moreover, there are several indices for assessing an item’s discrimination power. Two of 
these are the item’s point biserial and biserial correlation coefficients.

We begin by focusing on the biserial correlation as the discrimination index. Recall 
that the biserial correlation coefficient is a measure of the association between a contin-
uous normally distributed variable and another continuous normally distributed vari-
able that has been dichotomized (e.g., a variable such as Ω j ). To specify the relationship 
between the biserial correlation and the IRT discrimination parameter, we need to make 
two assumptions. First, because the biserial correlation assumes that both the dichoto-
mized and the continuous variables are normally distributed we need to assume that 
both Ω j  and the latent variable θ  are normally distributed. The second assumption is 
that there is no guessing on the item. Under these assumptions, Tucker (1946) and Lord 
and Novick (1968) show that the biserial correlation between the responses to an item j 
and the latent trait θ  is related to the item’s discrimination parameter by

	
α

ρ
α

=
+ 21

j

j
b

j

.	 (C.11)

Therefore, as the item discrimination increases so does the correlation between the item 
response and the latent variable.

Because θ  is unknown it is not possible to calculate the biserial correlation 
between the responses to an item j and the latent trait θ . However, to the extent the 
observed score is a reasonable proxy or measure of θ  (e.g., the instrument is of sufficient 
length and homogeneity; Urry, 1974), then one may calculate the biserial correlation, br , 
between the responses to item j and the observed score to estimate ρb . In this regard, 
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the relationship between item j’s traditional discrimination index, 
jbr , and the IRT dis-

crimination parameter, α j , may be expressed as (cf. Lord, 1980; also see Equation C.5)

	 α j
≅

− 21

j

j

b

b

r

r
.	 (C.12)

Therefore, as the correlation between the item and the observed score increases, α j  also 
increases. The traditional item discrimination index can also be expressed in terms of 
the IRT item discrimination parameter by rearranging Equation C.12

	
α

α
≅

+ 21
j

j
b

j

r .	 (C.13)

As mentioned above, a second traditional discrimination index is the point biserial 
correlation. The point biserial correlation gives the association between a true dichot-
omy and a normally distributed continuous variable. We can relate the point biserial 
correlation between the binary responses to an item and θ  to obtain the IRT discrimi-
nation parameter. To do this we use the relationship between the point biserial and the 
biserial correlations. This relationship requires knowing the height of the standard unit 
normal curve at the dichotomizing point. At and above this point or threshold, τ j , the 
response to the item is a 1 with an area represented by the shaded region in Figure C.1, 
π j . The height of the standardized normal distribution at the threshold is given by

	 Y( τ j ) =
τ

π
 −
 
 

2( )1
exp( 22

j .	 (C.14)

By using the covariance between the dichotomized item and the latent trait θ ,

	 θσ j  = ρ
jb (Y( τ j ))

and dividing it by the standard deviation of the dichotomized item (i.e., σ j  = π π−(1 )j j ) 
one obtains the point biserial, ρ

jpb , as a function of the biserial correlation

	 ρ
jpb  = 

θσ
σ

j

j

 = 
τ

ρ
π π

 
 

−  

(Y )

(1 )j

j
b

j j

. 	 (C.15)

As is the case with the biserial correlation, if the observed score is a reasonable 
proxy or measure of θ , then the point biserial correlation, pbr , between the responses to 
item j and the observed scores serves as an estimate of ρpb ; in this case the item’s jP  is 
used instead of π j . By solving for ρb  in Equation C.15 we can transform our estimated 

pbr  to its corresponding br  and then apply Equation C.12. The point biserial is more 
appropriate than the biserial for situations that involve guessing.

We now turn our attention to the relationship between item j’s location, δ j , and its 
traditional item difficulty index, jP . Recall that jP  is the proportion of respondents cor-

		  The Normal Ogive Models	 27



rectly responding to an item. If we assume that θ  is normally distributed (specifically, 
N(0,1)), then the proportion of respondents correctly answering item j corresponds to 
an area under this distribution. This area is delimited by a cutpoint, 

jt
z , and the rela-

tionship between 
jt

z  and jP  is depicted in Figure C.5. By using Equation C.6, assuming 
that there is no guessing on item j, and because we have only sample information, we 
can express the relationship between the traditional item difficulty index and the item’s 
location as (cf. Lord, 1952 , 1980; Tucker, 1946)

	 δ j  ≅ 
−Φ 1 1 –( )

jb

jP

r
 = 

j

j

t

b

z

r
,	 (C.16)

where 
jt

z  is the standard unit normal deviate that delimits an area to its left equal to 
1 – jP  and an area jP  to its right (Figure C.5) and −Φ �1( )(⋅) is the inverse (cumulative) 
normal function.5 Because high values of jP  indicate the same thing as low values of δ j  
(e.g., “easiness”) we use the complement of jP  (i.e., −(1 )jP ) so that 

jtz  may be inter-
preted similar to δ j . The relationship between jP  and δ j  is dependent on how well the 
item discriminates. When all items discriminate equally well, then as jP  increases δ j  
decreases.

We can use Equations C.12 and C.16 to “estimate” the IRT parameters α j and δ j . 
To demonstrate this we use the traditional item statistics from our mathematics data to 
estimate their corresponding IRT parameters. The traditional item difficulty and dis-
crimination indices for item 1 are 1P = 0.887 and 

1br  = 0.407, respectively. Therefore, 
with (1 – 1P ) = 1 – 0.887 = 0.113 we obtain 

jt
z  = –1.210727. (In Excel function we use 

FIGURE C.5.  Relationship of 
jt

z , −(1 )jP , and jP .
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NORM.INV((1-0.887), 0, 1) or in R qnorm(0.113, 0, 1) = –1.210727.) Substitut-
ing these values into Equation C.16 yields an IRT location estimate of

	 δ1
ˆ  = 

-1.210727

0.407
 = –2.97476

and a discrimination estimate of

	 α1
ˆ  ≅

−
1

1

21

b

b

r

r
 = 

− 2

0.406

1 0.407
 = 0.4456.

The relationships between jP  and δ j  as well as between α j  and 
jbr , may appear 

to provide a convenient approach for estimating α j  and δ j . However, there are various 
reasons why the JMLE (Chapter 3) and MMLE (Chapter 4) techniques are to be the pre-
ferred over using Equations C.12 and C.16. First, recall that both jP  and 

jbr  are sample 
dependent, whereas α j  and δ j  are sample independent. Second, Equations C.12 and 
C.16 hold only when the latent variable is normally distributed and there is no guessing 
on the items. Third, because the observed score, X, contains error and θ  does not, the 
X and θ  are distributed differently, and these approximations using Equations C.12 and 
C.16 “fall short of accuracy” (Lord, 1980, p. 33). Fourth, Equations C.12 and C.16 do 
not provide standard errors for the α j  and δ j  estimates. As such, we do not know how 
accurately the parameters are being estimated. Moreover, research has shown that the 
approximation approaches of Equations C.12 and C.16 do not produce estimates that are 
as accurate as the MLE approach. For instance, Jensema (1976) compared these approxi-
mation approaches with MLE and found that the MLE estimates were more highly lin-
early related to their parameters than the estimates based on Equations C.12 and C.16. 
Specifically, for MLE we have αα̂r  = 0.863 and δδ̂r  = 0.971, whereas using Equations 
C.12 and C.16 we have αα̂r  = 0.798 and δδ̂r  = 0.963. Similar results were reported by 
Swaminathan and Gifford (1983). Furthermore, the accuracy of the estimates increased 
as sample size and test length increased, and decreased as α  increased. The foregoing 
notwithstanding, Equations C.12 and C.16 can be used to provide provisional estimates 
or starting values for MMLE and JMLE.

RELATIONSHIP OF THE TWO-PARAMETER NORMAL OGIVE 
AND LOGISTIC MODELS

Because of the normal ogive model’s long history there was a desire with the introduc-
tion of the logistic form to make its results similar to those obtained from the normal 
ogive. The scaling constant D = 1.702 makes the logistic model’s values similar to those 
of the normal ogive model. (See Camilli [1994] for a discussion on the origin of D.)

The introduction of the scaling constant D into Equation 5.1 give us

	 θ α δ=( 1 | , , )j j jp x  = 
α θ δ

α θ δ

−

−+

( )

( )
1

j j

j j

D

D

e

e
 	 (C.17)
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Equation C.17 yields probabilities from the logistic distribution function that are similar 
to those produced by Equation C.9. In effect, the use of D aligns, as closely as possible, 
the logistic function with the standard normal ogive function by changing the slope of 
logistic ogive. The standard normal ogive and the logistic functions intersect at a prob-
ability of 0.50.

To demonstrate the correspondence between the logistic and normal ogive two-
parameter models we calculate the probability of a response of 1 when α  = 1.5 and 
δ  = 1.0 (item 2 from Figure 5.1). To calculate Equation C.9 we use the Excel function 
=NORM.DIST( α θ δ−( ( ))j j , 0,1,TRUE); see Endnote 1. For example, for θ  = 0.5 we have

Equation C.9:	 π =( 1)jx  = 
 π

−

−∞

 −
 ∫

1.5(0.5 1.0) 21 ( )
exp

22

z
dz  = 0.22663

Equation C.17:	 =( 1)jp x  = 
−

−+

1.702[1.5(0.5 1)]

1.702[1.5(0.5 1)]1

e

e
 = 0.21815

Equation 5.1:	
−

−= =
+

1.5(0.5 1)

1.5(0.5 1)
( 1)

1
j

e
p x

e
 = 0.32082

As can be seen, the discrepancy Equations C.9 and C.17 is about 0.01. This close corre-
spondence is exemplified in this item’s IRFs (Figure C.6); NORM _ 2P is two-parameter 

δ  = 1.0
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FIGURE C.6. I RFs for two-parameter normal ogive and logistic with and without D; α  = 1.5 
and δ  = 1.0.
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normal ogive (Equation C.9), LOG _ 2P is the 2PL model (Equation 5.1), and LOG _ 2PD 
is the 2PL model incorporating the scaling constant D (Equation C.17). The two-param-
eter normal ogive and the 2PL model with D are virtually indistinguishable in the neigh-
borhood around δ .

The introduction of D into the model changes the formulas for the slope and 
item information. With respect to the two-parameter logistic model’s slope (i.e., the 
first derivative of the model, ′jp ), the introduction of D results in the first derivative 
becoming

	 ′jp  = α −(1 )j j jD p p .	 (C.18)

By substitution for jp  and noting that α j  is defined at θ  = δ , the slope becomes

	 ′jp = α α=1
0.425

4j jD .	 (C.19)

Therefore, α j  is proportional to the slope of the tangent line to the IRF at δ j .
As noted in Chapter 5, Equation 5.2, the general formulation for item information is

	 θ( )jI  = 
′
−

2( )

(1 )
j

j j

p

p p
 	 (C.20)

By substitution of Equation C.18 for ′jp  into Equation C.20, one arrives at the item infor-
mation function for the two-parameter logistic model

	 θ( )jI  = α −2 2 (1 )j j jD p p .	 (C.21)

Using the logistic forms offers some advantages over using the normal forms of IRT 
models. For instance, one advantage of using Equation C.17 is the elimination of the 
integral in Equations C.9 and C.10 to make the mathematics simpler. A second advan-
tage of the model shown in Equation C.17 is that, unlike with the normal ogive IRF, 
there are sufficient statistics for estimating person location (Lord, 1980).

When the logistic and normal ogive models provide good fit, “parameter estimates 
in logistic models are about 1.6 – 1.8 times those in probit models” (Agresti, 1990, 
p. 104). Therefore, the model shown in Equation C.17 may be viewed as a mathemati-
cally convenient, close approximation to the (classical form of the) two-parameter 
normal ogive model. However, it should be noted that D’s value is not concerned with 
model–data fit. In this regard, and because of the indeterminacy of the metric, D may be 
set to any other convenient value (e.g., 1) without adversely affecting model–data fit. As 
a consequence, in this book the logistic model without the use of D (e.g., Equation 5.1) is 
considered to be an intrinsically useful model and we are not concerned with approxi-
mating the normal ogive form. By not using D the calibration results are on the logistic 
metric; the use of D ensures that the results are on the normal metric. In those situations 
where it is necessary to invoke D (e.g., in comparisons involving NOHARM) the reader 
is alerted to the use of D.
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EXTENDING THE TWO-PARAMETER NORMAL OGIVE MODEL 
TO A MULTIDIMENSIONAL SPACE

As mentioned above, the latent variable Ω j  is a function of a common factor θ  across all 
items on an instrument plus a term that is unique to item j. As such, the two-parameter 
normal ogive model may be seen as related to a unidimensional common factor analysis 
model (e.g., see McDonald, 1967, 1997). (It is this relationship that is used in Appendix 
G “Using Principal Axis for Estimating Item Discrimination.”) Moreover, this relation-
ship may be extended to a nonunidimensional common factor model. In this respect, 
Ω j  is a function of multiple weighted θs

	 Ω +′j Ej j= ρ θ 	 (C.22)

where ′jρ  is a row vector of factor loadings (i.e., ′jρ  = ρ ρ1{ , , }j jF ), θ  is a vector of person 
locations (i.e., θ  = {θ θ1 F, }), and Ε j  is item j’s unique factor. To develop our multidi-
mensional model we begin with the two-parameter normal ogive model. Assume that 
Ε j  and θ  are normally distributed and that Ω j  has been standardized to have a mean 
of 0 and a variance of 1. Therefore, Ω j  is also normally distributed; this is stated as an 
assumption above. Then, from above, we have the probability of a response of 1 is

	 = = Ω > = Φ τπ π τ( 1 | ) ( | ) ( )
jj j jx zθ θ ,	 (C.23)

where ( )Φ �  is the cumulative normal distribution function. Focusing on τ j
z  we have

	 τ j
z  = α θ δ α δ α θ− = − +( )j j j j j .	 (C.24)

By substitution of Equations C.5 and C.6 into Equation C.24 we can express our 
item’s intercept in terms of the item’s loading and its threshold

	 γ j  = α δ− j j  = 
ρ

δ
ρ

 
 −
 − 

21

j
j

j

 = 
ρ τ

ρρ

    −     −   
21

j j

jj

 = 
τ

ρ

 
 −
 − 

21

j

j

.	 (C.25)

(That is, because factor loadings are the biserial correlations of the responses with θ , 
Equation C.5 may be interpreted as expressing the item’s discrimination in terms of its 
loadings.) When we substitute Equations C.25 and C.5 into Equation C.24 we arrive at

	 τ j
z  = α δ α θ− +j j j  = 

τ ρ θ

ρ

+

− 21

j j

j

 	 (C.26)

We now have a vehicle to incorporate multiple dimensions. Specifically and follow-
ing McDonald (1997), we can express Equation C.26 in terms of F-dimensional vectors 
of factor loadings, ′jρ , and person locations, θ  (also see McDonald, 1999; McDonald & 
Mok, 1995)
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+ ′

=
− ′τ

τ
1j

j j

j j

z
ρ θ

ρ Σρ
,	 (C.27)

where Σ  is a covariance matrix and − ′1 j jρ Σρ  is the item’s unique variance across the 
F-dimensions (i.e., ρ− ∑ 21 f  = − 21 h ). By substitution of Equations C.5, C.25, and C.26 
into Equation C.23 we arrive at a multidimensional two-parameter normal ogive model

	 ( ) ( )
 + ′

= = Φ = Φ = Φ + ′  − ′ 
τ

τ
π γ( 1 | )
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j j
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x z
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θ α θ
ρ Σρ

.	 (C.28)

In this parameterization the intercept and slopes (discriminations) are obtained by

	 =
− ′

τ
γ

1

j
j

j jρ Σρ 	 (C.29)

and

	 =
− ′

ρ
α

1

j
j

j jρ Σρ ,	 (C.30)

respectively. Conversely, we have that

	 =
+ ′

γ
τ

1

j
j

j jρ Σρ 	 (C.31)

and

	 =
+ ′

α
ρ

1

j
j

j jρ Σρ .	 (C.32)

NOTES

1.  The Excel (Microsoft Corporation, 2018) function =NORM.DIST( τ j
z , 0, 1, TRUE) 

or the R function pnorm( τ j
z , 0, 1, TRUE) can be used to obtain π1 j . For the area above 

τ j
z  the function’s value is subtracted from 1 (e.g., =(1 – NORM.DIST( τ j

z , 0, 1, TRUE)).

2.  Because the distribution is symmetric 
∞

−∞
=∫ ∫

z

z  Equation C.8 follows from Equation  

C.2. Below we use the symbol ( )Φ �  to represent this standard normal ogive function.

3.  The value of σ j
 in the calculation of τ j

z  affects the magnitude of τ j
z  (Equation C.4). As 

σ j
 increases then τ j

z  decreases, all other things being equal. In addition, as the τ j
z s decrease 

the corresponding π sj  decrease. Therefore, the corresponding IRF’s slope decreases, all things 
being equal. Conversely, as σ j  decreases then τ j

z  increases and the IRF’s slope increases. As 
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such, because α  is proportional to the IRF’s slope there is an inverse relation between α  and σ j  
(i.e., α  = σ1 / j ). Because the metric is standardized to have a mean of 0 and a standard deviation 
of 1, the unit of measurement becomes the standard deviation unit. As a result, σ j  is referred 
to as a scale parameter and σ1 / j  is sometimes called dispersion (cf. Bock & Lieberman, 1970; 
Thurstone, 1925).

4.  Similar models are presented by Lawley (1943, 1944), Tucker (1946), and Thurstone 
(1925). For example, given the cumulative normal ogive function in Equation C.8 we have z is 
the unit normal deviate that delimits an area corresponding to the probability of a response of 1. 
Let z for person i and item j, ijz , be defined as

	 ijz  = 
θ µ

σ
−( )i j

j

 	 (C.33)

where θi  is person i’s location on the latent variable, µ j  and σ j  are the mean and standard 
deviation of the normal curve with respect to item j, respectively; this distribution is assumed 
to be normal with

	 σ j  = α
1

j

 	 (C.34)

If we take our total sample of individuals and divide it into subgroups and redefine the standard 
deviation in Equation C.33 to be the standard deviation of a subgroup, σ i , with mean µi , then 
its substitution into Equation C.2 gives Thurstone’s mental age model; we’re assuming that each 
subgroup is normally distributed. That is, Thurstone (1925; e.g., see p. 441) developed a model 
based on the cumulative normal distribution to determine the proportion of individuals of a 
specified age group correctly responding to an item.

5.  To determine the τ j
z  corresponding to 

−Φ 1( )jP  the Excel function =NORM.INV(
jP , 

0, 1) or the R function qnorm(
jP , 0, 1) can be used.
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“The facts are clear. From the point of view of measurement, tailored testing offers little, 
if any, advantage over the best that can be done with conventional testing” (Green, 
1970, p. 184). Although Professor Green reached this conclusion based on the research 
on computerized adaptive testing (CAT) in 1970, he proceeded to present an argument 
against the perspective that CAT provides little advantage over conventional “paper-
and-pencil” testing. In this appendix we provide a brief introduction to CAT from a pro-
ficiency assessment perspective. However, it should be noted that CAT can be applied to 
other psychological domains.

Computerized testing initially used the computer to simulate a paper-and-pencil 
test administration. This approach of administering items to an examinee without tak-
ing into account their responses is sometimes called a linear test. Therefore, the com-
puterized linear test and the conventional paper-and-pencil testing procedure admin-
ister the same items to every examinee in a fixed fashion regardless of the examinee’s 
responses to the items. Because the examinees most likely vary in the proficiency being 
measured, some items are too difficult for certain examinees, whereas others are too 
easy. This undermines the effectiveness of the test, but is inevitable whenever the items 
administered are not tailored to the individual examinee. In contrast, and in the most 
simplistic terms, with CAT the items administered are selected for the examinee, given 
the most current information about the examinee’s proficiency and the items avail-
able in the pool. Although no method of administering items and scoring dichotomous 
responses can produce better measurement than that achieved by a “standard test” at a 
proficiency level equal to zero (on the theta scale), an adaptive test tries to achieve this 
level of accuracy throughout the proficiency range (Lord, 1971a). In so doing it achieves 
equiprecise measurement across the continuum. Additional advantages of CAT over 
conventional paper-and-pencil tests are a comparative (potential) test length reduction 
of 80% and the capacity to administer questions that take advantage of the comput-
erized administration mode and that could not be administered with a conventional 
paper-and-pencil test.
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The concept of adapting an instrument to an individual can be traced back over a 
century. Throughout this time computerized adaptive testing has had many different 
names, such as tailored testing, response-contingent testing, sequential testing, and pro-
grammed testing. Regardless of what the concept has been called, it has primarily been 
concerned with minimizing the measurement errors associated with estimating an indi-
vidual’s location. We begin with a brief history of adaptive testing and then proceed to 
discussing CAT.

A BRIEF HISTORY

The first adaptive test is considered to be the individually administered Binet–Simon 
intelligence test developed in the early 1900s (Weiss, 1982). In this test the particular 
subtests administered were chosen on the basis of the examinee’s current ability level 
as determined during the testing procedure. That is, if an examinee passed all or any of 
the subtests within an ability level, then a higher-ability level of subtests is subsequently 
administered. Conversely, if an examinee fails all subtests at a given ability level, then 
the test is terminated. Therefore, the Binet test is adaptive with respect to ability level. 
Binet’s procedure differs from present-day tailored testing in that it requires the exam-
inee to answer all the questions associated with a particular ability level (Wood, 1973) 
and its administration requires a highly trained examiner rather than a computer.

In the 1940s two procedures, the staircase method and the sequential analysis sys-
tem, were developed (Wood, 1973). The sequential analysis system has seen some use in 
mastery testing (e.g., see Reckase, 1980). The staircase method is analogous to the meth-
ods used by psychophysicists. Experimental psychologists’ have used adaptive testing 
procedures in their psychophysical experiments for decades. Their methods, called 
adaptive convergence procedures, include the method of adjustment and the method of 
limits (Weiss, 1983).

In 1951, Hick presented all the ingredients of adaptive testing as it is now under-
stood (Wood, 1973). In his article he stated that an intelligence test should be a branch 
process, with all questions having a 0.5 chance of being correctly answered. Patterson 
(1922; cited in Wood, 1973) took a pool of items and arranged them in such a way that 
an examinee, starting with an average difficulty item, would receive a harder item if 
they correctly answered the previous item and an easier item if they had answered the 
item incorrectly. Fixed-branching methods like those used by Patterson, and using tra-
ditional item statistics, were used during most of the 1960s.

In 1970, Lord outlined some test theory for tailored testing. Based on the study of 
various testing algorithms used in that article, he stated that better measurement could 
be obtained by selecting and administering, for example, the 60 most discriminating 
items as a conventional test rather than administering, for example, 500 items in a tai-
lored testing procedure. It is ironic that Lord’s (1970) work and its indisputably poor 
results marked the beginning of the integration of IRT with tailored testing procedures. 
In this regard, there have been a number of procedures developed.
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The literature contains various taxonomies for grouping the different types of 
adaptive testing strategies (e.g., Hambleton & Swaminathan, 1985; Lord, 1970; Reckase, 
1977; Vale, Albing, Foote-Lennox, & Foote-Lennox, 1982). These taxonomic schemes 
differ in their organization and terminology. For example, Reckase (1977) differentiates 
among methods depending on whether the adaptive testing method uses a mathemati-
cal model for determining the examinee’s path through the item pool. Specifically, if the 
method uses a mathematical model for item selection, then the technique is classified 
as model-based; otherwise, the method is classified as a structure-based method. The 
former item selection type may be called variable-branching item selection, whereas the 
latter may be called fixed-branching item selection. It is this latter terminology that we 
adopt in the following discussion.

FIXED-BRANCHING TECHNIQUES

Fixed-branching strategies use a predetermined or fixed routing procedure through an 
item pool. The arrangement of items in the pool in conjunction with the routing method 
define the item selection process (Patience, 1977). The item pool size is determined 
by the procedure used. Fixed-branching procedures may be implemented either on a 
computer or as a paper-and-pencil test. There are many possible fixed-branching tech-
niques, and their number is limited only by the ingenuity of the test designer. Examples 
include, but are not limited to, the flexilevel test (Lord, 1971b, 1971c), the stradaptive 
test (Weiss, 1973), the pyramidal test (Larkin & Weiss, 1975), random-walk techniques 
(Lord, 1970), and the two-stage test (Cleary, Linn, & Rock, 1968; Lord, 1971d, 1980).1 
These approaches may or may not use an IRT model for person location estimation. 
When they do not, the proficiency estimate is a simple function of the responses to items 
and the items’ characteristics. For instance, the estimated proficiency is the number of 
correct responses, a weighted composite of the items administered (e.g., the average of 
the difficulties of the items administered or the average of the difficulties of the items 
correctly answered), or a function of the difficulty of the last item administered and the 
difficulty of the item that would have been administered next (Reckase, 1977; Lord, 
1970) such as the mean difficulty of the last and next items.

VARIABLE-BRANCHING TECHNIQUES

Variable-branching procedures usually use an IRT model for person location estima-
tion. (One could use a different model, such as a latent class model.) The item selection 
process is designed to maximize the information about an examinee’s location. Two 
commonly used techniques are to select items that produce a specified probability of 
a correct response for an examinee’s location estimate or maximize the information 
function (Patience, 1977; Reckase, 1977). Because of the computations required for item 
selection and person location estimation, variable-branching procedures are typically 
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implemented on a computer. (A paper-and-pencil tailored test based on the Rasch model 
is presented by Fischer and Pendl [1980].) Typically, MLE, EAP, or MAP is used for 
estimating an individual’s location. (In general, an individual’s observed score is usually 
inappropriate as a proficiency estimate because each examinee may respond to differ-
ent items and different numbers of items [Reckase, 1977].) The item pool is designed 
to maximize the computer program’s efficiency in searching for a particular item to 
administer. Most of the current research in computerized adaptive testing uses variable-
branching techniques.

ADVANTAGES OF VARIABLE-BRANCHING  
OVER FIXED-BRANCHING METHODS

Variable-branching procedures eliminate some of the problems encountered with fixed-
branching methods. For instance, non-IRT-based fixed-branching tests use item char-
acteristics that are dependent on the particular sample of examinees used in their cal-
culation. Therefore, the item characteristics may (and probably will) vary from sam-
ple to sample and result in more error in the proficiency estimates. A second problem 
with these fixed-branching non-IRT techniques is that the proficiency estimates are 
expressed on a different metric than the item difficulty parameter estimates (Weiss, 
1982). As a result, it is difficult to select items that use all the information in the examin-
ee’s response and that are of appropriate difficulty for the examinee. Third, unlike some 
of the fixed-branching methods, IRT-based variable-branching procedures produce pro-
ficiency estimates that are independent of the particular subset of items administered 
to an examinee. As a consequence, different items can be selected for administration for 
each examinee and the resulting proficiency estimates are on the same metric (Weiss, 
1982). Furthermore, adaptive tests can be designed to cover as wide a range of ability as 
desired. Lord designed a test that placed examinees from fourth grade up to graduate 
school on the same score scale (Lord, 1977).

A fourth problem with fixed-branching tests concerns the method of test termi-
nation. Fixed-branching tests typically terminate when a preset number of items are 
administered. Therefore, the degree of precision in ability estimation is not controlled 
by the examiner. Because with IRT-based variable-branching tests the standard error of 
the person estimate is directly related to the test’s reliability, a test can be terminated 
when a predetermined level of precision is reached. In other words, a test is terminated 
when a particular degree of reliability is attained (Urry, 1977).2

A fifth issue involves item selection. Whereas fixed-branching methods typically 
use a predefined item selection algorithm, the use of IRT parameters permits items to 
be selected on the basis of more than just their difficulty levels (Weiss, 1982). Conse-
quently, item selection can simultaneously take into account the item’s difficulty, its 
discrimination, and the pseudo-guessing parameter as well as other considerations (e.g., 
content). In addition, the first item administered can be based on considerations other 
than the item happens to be of median difficulty.
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A further consideration is test security. Because variable-branching methods are 
typically computerized, they are harder to compromise than noncomputerized fixed-
branching techniques. For example, there are no test booklets that can be stolen, item 
pools can be encrypted, and so on. Moreover, the greater flexibility in item selection 
of variable-branching adaptive testing methods reduces the chances of an examinee 
receiving the same test more than once in a test-retest situation.

IRT-BASED VARIABLE-BRANCHING ADAPTIVE TESTING ALGORITHM

Under certain conditions CAT leads to improved measurement relative to conventional 
paper-and-pencil tests. These conditions are (1) an appropriate item response model, 
(2)  accurate estimates of item parameters, (3) the construction of a good item pool, 
and (4) efficient unidimensional (or multidimensional) procedures for adaptive testing 
(Urry, 1977). Although in the following discussion we assume a unidimensional model, 
it is possible to use CAT with multidimensional models. The reader interested in multi-
dimensional CAT is referred to Luecht (1996), Seagall (1996), Reckase (2009), and van 
der Linden (1999).

Conceptually, IRT-based variable-branching strategies consist of selecting and 
administering the item that is expected to most improve the current proficiency esti-
mate. In general, these items are selected such that the examinee is expected to have 
about a 50% chance of correctly answering the items. The premise for this item selection 
strategy is that a test is most effective in measuring an examinee’s proficiency “when the 
examinee knows the answers to only about half of the test items” (Lord, 1970, p. 140).

The CAT algorithm consists of four basic components: (1) the selection of the first 
item to administer, (2) the scoring or processing of the examinee’s response to obtain a 
location estimate, (3) the selection of another item for administration (this may or may 
not be the same as that used for the first component), and (4) stopping criterion/criteria 
for terminating a test. In general, the basic decision rule for item selection (i.e., the third 
component) is to select items that are progressively more appropriate for the examinee 
than those administered beforehand. Thus and in the context of proficiency assessment, 
if an examinee correctly answers an item, then the examinee’s ability is most likely 
higher than the answered item’s location. Consequently, for the next item to be more 
appropriate than the previous one, its location should be higher (i.e., “harder”). Con-
versely, if an examinee incorrectly answers an item, then the examinee’s ability is most 
likely lower than the incorrectly answered item’s location. As a result, for the next item 
to be more appropriate than the previous one, its location should be lower (i.e., “easier”). 
(The terms “harder” and “easier” are relative to the examinee’s current ability estimate.)

CAT implementation requires a pool of items from which item are selected. Ini-
tially, this item pool can be created by administering conventional paper-and-pencil 
examinations, calibrating the data with the appropriate model, and linking the separate 
calibrations (see Chapter 11). Subsequently, items may be pretested within the CAT 
examinations to augment/replenish the item pool. Item pool size varies as a function 
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of the item characteristics, test security concerns, the nature of the examination (e.g., 
high-stakes), breadth of content to be covered, and so on. A rule of thumb is that the 
number of items should be at least 8 to 12 times the average CAT length. For example, 
for an examination that averages 25 items, this guideline would say the item pool should 
have 200 to 300 items. The items’ parameter estimates are treated as known when esti-
mating an examinee’s proficiency.

The computerized adaptive test typically begins with making a guesstimate as to 
the examinee’s initial location. For example, we could assume that the examinee is of 
average proficiency (i.e., θ̂  = 0), use ancillary information about the examinee to provide 
an initial location estimate (e.g., from a subtest), or randomly select the initial location 
guesstimate from within a θ  range, such as –0.50 to 0.50. In general, the examinee’s 
initial θ̂  should be in the region corresponding to the median of the item pool difficulty 
distribution. This would allow movement through the pool in either direction while 
minimizing problems stemming from “topping-out” or “bottoming-out” of the item 
pool after only a few items (Patience & Reckase, 1980). (Topping-out refers to having an 
examinee location estimate that is so high that there are no items in the pool that are 
appropriate for administration. Conversely, bottoming-out occurs when the examinee’s 
location estimate is less than the least difficult item in the item pool.) Weiss (1982) has 
stated that, on the basis of his personal experience, most adaptive tests are shortened 
by only a few items with the use of accurate initial location estimates. Stated more posi-
tively, the more accurate the initial person location estimate, the more quickly the adap-
tive test will converge to the individual’s proficiency estimate.

Once we have an initial person location estimate we can select the first item for 
administration. The approach to select first item interacts with the method used for 
obtaining the examinee’s initial location estimate. As a result, there are a number of 
strategies that can be used for selecting this first item. For example, on the basis of 
the initial location estimate, the algorithm may select the most informative item in the 
item pool. However, in this case if we assume that each examinee is of average profi-
ciency, then we will always administer the same first item. In practice one needs to be 
concerned with overexposing items. Therefore, to avoid overexposing the first item, 
the algorithm may randomly select the first item from a set of items that are roughly 
equally informative (i.e., in terms of item information). Some other first item selection 
possibilities are to simply randomly select an item of average difficulty; using the item 
that is most informative for a θ  value corresponding to the mode of the item pool total 
information distribution; using the item that is most informative for a θ  correspond-
ing to the median of the item pool total information distribution; and selecting the item 
on the basis of external information. If we had used the randomly assigned/θ  range 
approach, then we could simply select the most informative item for our guesstimate. If 
the tailored test is reasonably long (e.g., 25 items), then the choice of the initial item has 
almost no effect on the standard error of the final person location estimate (Lord, 1977).

After the examinee responds to the administered item, the response is scored and 
this information is used to estimate the examinee’s θ . Any of the approaches discussed 
in this book, such as MLE, EAP, or MAP, can be used. The implementation of MLE 
and EAP for CAT is identical to that presented in Appendix A and Chapter 4, respec-
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tively. With either EAP or MAP we can estimate the person’s location after scoring their 
response to the first item. However, this is not the case with MLE. With MLE it is not 
possible to obtain an estimate of the person’s location until they have provided both 
correct and incorrect responses; for polytomous data the responses need to be in dif-
ferent categories (see Dodd, Koch, and de Ayala [1989]). Therefore, when we have zero-
variance response vectors we need to modify our initial θ  estimate without using MLE 
in order to select the next item. We present three strategies that, in effect, may be con-
sidered fixed-branch approaches.

One approach is to set the new θ̂  equal to the previous θ̂  plus or minus a fixed 
amount (e.g., step size = 0.3 logits). That is, if the examinee correctly responded to the 
first item, then the new θ̂  equals the initial estimate plus this fixed amount; otherwise 
the new θ̂  equals the initial estimate minus the fixed amount. In either case, the item 
administered is based on the new θ̂ . A variant of this fixed step size approach is to use 
a variable step size. In this strategy, the step size used with the first item is successively 
divided in half until we have a response vector with correct and incorrect responses. 
For example, if the first step size is 0.30, the second step size would be 0.15, the third 
step size would be 0.075, and so on. This variable step size approach seeks to minimize 
the possibility of topping- or bottoming-out. An alternative variable step size approach 
is to simply select an item that is midway between the administered item’s location and 
an item with an extreme location. In other words, if the person correctly responds to 
the administered item, then the next administered item would be midway between the 
administered item’s location and the most difficult item. Conversely, if the person incor-
rectly responds to the administered item, then the next item would be midway between 
the easiest item and the administered item’s location. Either approach is repeated until 
the examinee has provided both a correct and an incorrect answer.

Once we obtain a new θ̂ , the next item administered is (1) the most informative 
item in the pool for the current proficiency estimate, (2) the item that yields the greatest 
weighted information, or (3) the item that will lead to the greatest reduction in the pos-
terior distribution’s variance.3 The first of these three strategies is known as the maxi-
mum global information or the maximum information search and selection technique 
(MISS; Kingsbury & Weiss, 1983). The last two selection strategies are associated with 
Bayesian estimation; MISS may be used with either MAP or EAP estimation.

This process of administering items, scoring the responses, and re-estimating the 
examinee’s location continues until some termination criterion is satisfied. In this regard, 
there are two types of CAT examinations. With the variable-length CAT examination the 
length of the examination may differ across examinees. In this case, the termination cri-
terion is either that the examinee’s SEE ( θ̂( )es ) is less than the maximum SEE criterion 
or that there are no more items remaining in the pool with information values greater 
than some minimum value; also see Jensema (1974). Typically, these criteria are used 
in conjunction with a maximum test length in case the minimum item information (or 
maximum SEE) criterion is not satisfied. The second type of CAT examination is a fixed-
length CAT test. In this CAT the adaptive test terminates after a fixed number of items 
are administered. As a result, all examinees have an examination of the same length. We 
summarize the CAT algorithm in Figure D.1.
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In Table D.1 we present the results from a variable-length CAT examination simu-
lation. For our simulation we use MLE with a fixed step size of 0.3. Items are selected 
on the basis of MISS with a minimum information criterion of 0.9. The maximum test 
length is 30 items and the item pool size is 240 items. The table’s rows represent each 
item administered with the item’s number, α̂ j, and δ̂ j  presented in the second, third 
(A), and fourth columns (B), respectively. For example, the first item administered is 
item #229 with an α229

ˆ  = 2.580 and a δ229
ˆ = 0.047. To begin our CAT examination we 

assume the simulee is of average proficiency (i.e., θ̂  = 0; PREVIOUS ESTIMATE col-
umn, row 1). The most informative item in the pool for θ̂  = 0 is item #229 with an item 
information of 1.658 (INFO column, row 1). Because our examinee correctly responded 
to this item (RESP column, row 1) we add the step size of 0.3 to the initial θ̂  of 0 to 
obtain a REVISED ESTIMATE of 0.3. Based on this θ̂  = 0.3 we select the second item 
to be administered. The most informative item is item #181 with an information value of 
1.889 (INFO column, row 2). Again, the person correctly responds to the item and again 
we add the step size to our current θ̂ .

We keep adding the step size until we administer the fifth item, at which point the 
examinee incorrectly responds (RESP column, row 5). Therefore, after administering 
five items we are able to use MLE because we now have a response vector that has at 

Algorithm  
(Computerized adaptive test - not Computerized fixed (linear) test nor Computerized Classification tests)

Select item from Item Pool 

No

Yes

Report estimate on 
appropriate scale

 
Test Over?

Get Person Response
STOP

Initial     Estimate

Easier/Harder to Endorse

Score Response
process response

Estimate Person Location
MLE MAPEAP

θ

FIGURE D.1.  Schematic of CAT algorithm.
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least one correct response and one incorrect response; the actual response vector is x  = 
11110. Our MLE θ̂  is 1.350 (REVISED ESTIMATE column, line 5) with a θ̂( )es  of 0.429 
(SEE column, line 5); the SEE = –99.900 for the first four items is used as a placeholder 
when we cannot use MLE. The process of item selection, re-estimation of θ , and check-
ing to see if there are any more items with information values greater than 0.9 continues 
until we have administered 24 items. Examining the REVISED ESTIMATE and SEE 
columns in conjunction with the RESP column shows the algorithm homing in on the 
final proficiency estimate. After the administration of the 24th item (item #205), there 
are no items remaining in the pool that satisfy the minimum information criterion of 
0.90 and the CAT examination stops. Our person location estimate at termination is θ̂  
= 1.098 with a θ̂( )es  = 0.192. Of course, this θ̂  may be transformed to another metric 
such as the expected trait score, ε T, by Equation 4.23, or to some other target metric by 
Equation 4.17.

The foregoing is an oversimplification of CAT item selection. In practice, item selec-
tion involves content balancing, the pretesting of items, ensuring that items are not 
overused (i.e., exposure rate control), and so on. (More information on exposure rate 
control may be found in Georgiadou, Triantafillou, and Economides [2007]; Hetter and 

TABLE D.1.  CAT Examination Audit Trail for One Person

ESTIMATED THETA= 1.098
INITIAL THETA= 0.000

 ORDINAL 
POSITION

 ITEM # 
ADMINISTERED A B

PREVIOUS 
ESTIMATE RESP

REVISED  
ESTIMATE INFO SEE

 1 229 2.580 0.047 0.000 1 0.300 1.658 -99.90
 2 181 2.954 0.560 0.300 1 0.600 1.889 -99.90
 3 182 2.424 0.508 0.600 1 0.900 1.451 -99.90
 4 201 2.963 1.169 0.900 1 1.200 1.880 -99.90
 5 189 2.772 1.174 1.200 0 1.350 1.918 0.429
 6 146 2.876 1.746 1.350 0 1.252 1.520 0.372
 7 143 2.436 1.358 1.252 1 1.415 1.459 0.351
 8 232 2.431 1.349 1.415 0 1.282 1.468 0.315
 9 193 2.446 1.037 1.282 0 1.146 1.369 0.292
10 196 2.220 1.313 1.146 0 1.076 1.191 0.279
11 215 2.168 1.149 1.076 0 1.004 1.168 0.268
12 141 2.383 0.646 1.004 1 1.051 1.189 0.257
13 34 2.145 1.071 1.051 0 0.987 1.150 0.249
14 224 2.401 0.614 0.987 1 1.027 1.187 0.240
15 186 2.407 0.551 1.027 1 1.058 1.061 0.233
16 131 2.179 1.382 1.058 0 1.021 1.051 0.227
17 86 2.045 0.983 1.021 0 0.969 1.044 0.221
18 187 2.043 1.022 0.969 0 0.924 1.040 0.216
19 133 2.082 0.632 0.924 1 0.957 0.989 0.211
20 138 1.940 0.919 0.957 1 0.997 0.939 0.207
21 161 2.189 1.428 0.997 1 1.062 0.966 0.203
22 172 2.004 1.219 1.062 1 1.107 0.980 0.199
23 129 1.912 1.005 1.107 0 1.067 0.905 0.195
24 205 1.914 0.932 1.067 1 1.098 0.901 0.192
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Sympson [1997]; McBride and Martin [1983]; Stocking and Lewis [1998]; Stocking and 
Lewis [2000]; van der Linden and Veldkamp [2004]; and Way [1998].) In some cases, 
for test security concerns the first few items may be randomly selected from item sets; 
these sets contain items with similar characteristics. In general, examinees are not per-
mitted to return to items and change answers nor to omit items. Therefore, additional 
implementation concerns include whether examinees should be permitted to omit 
items, revisit answered items, or mark items for review, or change answers to admin-
istered items; the handling of examinees who have been unable to finish; the handling 
of nonconvergence with MLE; and item pool characteristics (e.g., information distribu-
tion, size, etc.). There are variants of the item information approach for selecting items 
that may be considered for a CAT implementation. For more information on CAT, as 
well as a discussion of some of these issues, see Drasgow and Olson-Buchanan (1999), 
Parshall, Spray, Kalohn, and Davey (2002), Reckase (1989), Sands, Waters, and McBride 
(1997), van der Linden and Glas (2000), van der Linden and Glas (2010), and Wainer et 
al. (2000), as well as the International Association for Computerized Adaptive Testing 
(IACAT) at http://www.iacat.org/.

NOTES

1.  A two-stage test consists of a short routing test that determines which second-stage test 
is most appropriate for the examinee. The second stage consists of multiple tests that vary in 
their difficulty, but each test is homogeneous in terms of difficulty. The examinee takes the 
routing test and, depending on their location estimate, is administered a second-stage test of 
appropriate difficulty. A variant of this approach uses three stages (cf. Fischer & Pendl, 1980).

The pyramidal test is sometimes called a multistage or multilevel test. Conceptually, the 
item pool is structured as a binary tree or Pascal’s triangle. Each item in the pyramid has a left-
hand branch that leads to an easier item and a right-hand branch that leads to a more difficult 
item. The first item administered is of median difficulty and is at the apex of the pyramid. Each 
subsequent row (i.e., level) has its items ordered from easy to hard as one progresses across the 
row from left to right. As an examinee answers items, they progress down through the levels 
of the binary tree. Which item is administered next depends on the correctness of examinee’s 
response to the currently administered item. If the examinee correctly responds to an item, then 
they are administered a more difficult item (i.e., the item on the right-hand branch); otherwise 
the item is an easier item (i.e., the item on the left-hand branch).

For the flexilevel test the item pool is, conceptually, an inverted V, with the item of median 
difficulty at the apex. The left branch of the V contains items in increasing order of easiness, 
whereas the right branch contains items in increasing order of difficulty. The items in each 
branch are numbered, beginning with 1, up to (L – 1)/2. The testing procedure begins with 
the item of median difficulty. The subsequent item selection uses a simple decision rule: If an 
examinee correctly responds to an item, then they are administered the next lowest numbered 
right-branch item that has not previously been answered. Conversely, if the examinee incorrectly 
responds to an item, then the next item administered is the next lowest numbered left-branch 
item that has not previously been answered. Consequently, if the examinee correctly responds to 
the first item, then they answer the first item in the right branch. Otherwise, their second item 
is the first item in the left branch. Assuming the examinee correctly responds to the first two 
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items, then the next item administered is the second item in the right branch, and so on. If they 
incorrectly responds to this item, then the fourth item administered is the first item in the left 
branch, and so on. The test terminates after (L + 1)/2 have been administered. For example, if we 
have a 71-item pool, then the test terminates after the examinee takes (71 + 1)/2 = 36 items. The 
flexilevel may be implemented as a paper-and-pencil test or on a computer (e.g., see de Ayala, 
Dodd, & Koch, 1990).

2.  An alternative way of presenting this termination criterion is in terms of the ability 
estimate’s standard error. Specifically, the adaptive test is terminated once the examinee’s ability 
estimate’s standard error is less than an acceptable maximum standard error. For instance, the 
termination standard error may be set at 0.30; this value is determined from the item pool char-
acteristics. Once an item is administered that results in an examinee’s ability estimate’s standard 
error falling at or below 0.30 the adaptive test is terminated. As is the case with maximum infor-
mation search and selection technique (discussed above), a second criterion based on the maxi-
mum number of items that can be administered is also used. In other words, an adaptive test 
is terminated whenever the examinee’s ability estimate’s standard error is equal to or less than 
the criterion value or the maximum number of items administered is reached (whichever occurs 
first). We call this standard error focused criterion the target standard error termination criterion 
although it could be referred to as a maximum standard error termination criterion because it 
specifies the maximum standard error considered acceptable. (This standard error stopping rule 
has also been referred to as the minimum standard error criterion.)

3.  For a Rasch model-based CAT the item located closest to the examinee’s current profi-
ciency estimate is selected because all items have the same maximum item information.

		  Computerized Adaptive Testing	 45



46	

In this book, we treat the individual as a “black box.” However, there are IRT models 
that can be used to attempt to take into account cognitive processes. One such model 
is Fischer’s (1973) linear logistic test model (LLTM). The LLTM is an extension of the 
Rasch model designed to incorporate item characteristics that describe performance on 
the items. These item characteristics can be used to account for variability in the item 
locations (e.g., why an item is more difficult than another item). Moreover, item char-
acteristics can be cognitive operations/skills required to correctly respond to an item, 
item features, item response format, instructional conditions item position, and so on 
(see Embretson, 1984; Kubinger, 2009). In those cases where the item characteristics 
(e.g., cognitive structure underlying the item set) are theory driven one may consider 
using the term “explanatory” (e.g., as in explanatory IRT models). However, if there is no 
theoretical framework, then simply using item characteristics as predictors should not 
warrant the use of the term “explanatory.” This is particularly true for non-experimental 
settings where it is impossible to isolate the variables of interest to determine whether 
the observed relationship is spurious. Moreover, our item characteristics may be proxies 
for or convenient abstractions of the true cause(s). Nevertheless, these proxies may be 
useful for making predictions that describe performance on the item. In these cases, it 
may be prudent to not consider the item characteristics has having an explanatory or 
causal interpretation.

In the LLTM, the item location parameter is constrained to be a linear function of a 
common set of basic parameters that describe the relevant item characteristics

	 δ j  = η
=

+∑
1

S

js s
s

q C , 	 (E.1)

where ηs  is a basic parameter (i.e., item characteristic) associated with elementary com-
ponent s, S is the number of components, jsq  is the weight of component s for item j, and 
C  is a normalization constant equal to
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q
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C is the mean of the location estimates prior to dealing with the indeterminacy of the 
metric (Baker, 1993a). The jsq s might be the hypothetical frequencies with which each 
component influences the solution of each item j, or may simply reflect whether a com-
ponent is necessary for responding to an item.

Incorporating Equation E.1 into the Rasch model (Equation 2.2) we obtain the 
LLTM

	 jp  = 
θ δ

θ δ
−

+ −
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1 exp( )
i j
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As can be seen, the LLTM includes the decomposition of δ j  into a weighted linear com-
posite of parameters that correspond to the components that describe the performance 
on item j. When the number of components equals the number of items on the instru-
ment, then the LLTM is equivalent to the Rasch model (Embretson, 1984). The LLTM 
has been extended to rating scale and partial credit data (Fischer & Ponocny, 1994, 
1995).

The ηs  may correspond to cognitive operations required to solve an item, instruc-
tional conditions (characterized by their efficacy) experienced by the individual before 
attempting the item, or the “difficulties” of the cognitive operations (see Embretson, 
1984). In short, these components can reflect hypotheses about the psychological struc-
ture of the item. Consequently, Equation E.1 shows that the item’s location is the result 
of the (weighted) cognitive operations required to respond to the item. The values of the 
η ss  provide information about the relative contribution of a component to the item’s 
location (Baker, 1993a). In effect, the η ss  are regression weights. The cognitive struc-
ture underlying the item set is determined prior to the calibration of the data or as part 
of the instrument creation process. Additionally, if one has ηs  estimates, then one can 
construct items to reflect one or more basic operations to locate an item in a particular 
region of the continuum. For more information on cognitive structure/processing and 
how it can be used for instrument development, see Embretson (1985, 1996), Frederik-
sen, Mislevy, and Bejar (1993), and Irvine and Kyllonen (2002).

Fischer (1973) presents an example in which to correctly answer mathematics items 
the examinee must take the first derivative of a series of functions. The first two ques-
tions on the 29-item test are

1.	 +3 2 5( 1)x x       2. 
−
+

2 3

5 4

x

x

The basic rules/operations that are necessary to solve the problems are
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1.	 Differentiation of a polynomial		  5.  sin(x)

2.	 Product rule				    6.  cos(x)

3.	 Quotient rule				    7.  exp(x)

4.	 Compound functions			   8.  ln(x)

For instance, for the first question one needs to use rules 1, 2, and 4, whereas for 
the second question one uses rules 1 and 3. The operations associated with which items 
are indicated by the corresponding sjsq . The sjsq  for the test may be collected into a S 
by L weight matrix, Q ; S < L. For example, for the first two items and the 29th item our 
Q  would be

	 Q  = 

 
 
 
 
 
 

1 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

:

1 0 1 1 1 1 0 0

,

where the columns represent the eight operations and the rows reflect the items. In this 
case, the entries in Q  reflect whether the operation is needed ( “1”) or not needed ( “0”) 
for a particular item. For example, the first column indicates that rule 1 is used for items 
1, 2 and 29 and the second column shows that rule 2 is used only for item 1, but not for 
item 2 or item 29, and so on.

Fischer’s calibration results showed that for the test

	 η1
ˆ  = –0.199			   η5

ˆ  = –0.626

	 η2
ˆ  = 0.061			   η6

ˆ  = –0.759

	 η3
ˆ  = –0.290			   η7

ˆ  = 0.020

	 η4
ˆ  = –1.750			   η8

ˆ  = –0.388

with C = 2.066. (Note the η̂ ss  are constant across the items.) Therefore, given

	 δ j  = η
=

+∑
1

S

js s
s

q C

the item location estimates for items 1 and 2 are

	 δ1
ˆ  = 1(–0.199) + 1(0.061) + 0(–0.290) + 1(–1.750) + 0(–0.626) + 0(–0.759) + 

            0(0.02) + 0(–0.388) + 2.066 = 0.178

	 δ2
ˆ  = 1(–0.199) + 0(0.061) + 1(–0.290) + 0(–1.750) + 0(–0.626) + 0(–0.759) + 

            0(0.02) + 0(–0.388) + 2.066 = 1.577

Although there are specialized programs for obtaining estimates for the LLTM (see 
Seliger & Fischer, 1994), it is possible to perform the analysis using a two-step approach 
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that doesn’t require specialized programs. This approach produces results that are simi-
lar to those of the specialized programs. The first step in this approach is the fitting of 
the Rasch model (Equation 2.2). The second step involves regressing the resulting δ̂ sj  
on the component variables (i.e., δ =ˆ

j s jsb q ; see Embretson and Daniel [2008], Green 
and Smith [1987]). The resulting regression coefficients are the estimates of the η ss  (i.e., 
η = ˆˆ

s sb , the effect of characteristic s).
The usefulness of LLTM for a particular instrument depends on the accuracy of 

the hypothesized cognitive structure underlying the item set (i.e., the Q  matrix). Baker 
(1993a) examined the effects of the misspecification of the Q  matrix. He found that the 
parameter estimates’ accuracy depended on the sparseness of the Q  matrix as well as 
the sample size. Even a small degree of misspecification had a large impact on the esti-
mates. He concluded that “because specifying the < Q > matrix is a judgmental task, it 
must be done with great care” (p. 209).

Moreover, the LLTM assumes an item’s location is perfectly predictable by the 
weighted item characteristics. However, this assumption may not be tenable and it may 
be prudent to include a random error term in Equation E.1. Janssen, Schepers, and Peres 
(2004) present such a model. In Chapter 13 we discuss a LLTM with a random error 
term. The reader interested in the application of an LLTM-like model would be well 
served by considering the Janssen et al. (2004) model.

The advantage of using a specialized program for performing an LLTM calibration 
(e.g., the R package eRm; Mair, Hatzinger, & Maier, 2018) is the fit information provided. 
This is particularly important when one is evaluating different cognitive structures for 
an item set. That is, because competing theories may lead to alternative cognitive struc-
tures for an item, the LLTM may be used for evaluating these competing theoretical 
explanations. For additional application examples see Embretson (1993), Embretson 
and Wetzel (1987), Fischer and Formann (1982), and Spada and McGaw (1985).

EXAMPLE OF LLTM CALIBRATION USING eRm

Nutrition literacy is defined as “. . . as the degree to which individuals can obtain, pro-
cess, and understand the basic health (nutrition) information and services they need 
to make appropriate health (nutrition) decisions” (Silk et al., 2008, p. 4). Zoellner et al. 
(2011) found relationships between participants’ diet quality and their nutrition literacy, 
age, gender, as well as participation in the Supplemental Nutrition Assistance Program 
(SNAP). We conceptualize nutrition literacy as a continuous latent variable and pro-
ceed through the steps of scale construction to develop a ten-item multiple choice for-
mat instrument that measures participants’ nutrition literacy; for example, see Boateng, 
Neilands, Frongillo, Melgar-Quiñonez, and Young (2018). An example item from the 
scale could be

Butter has lots of fat that can increase cholesterol.

(a)	 monounsaturated

(b)	 polyunsaturated
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(c)	 saturated

(d)	 trans

(This item is similar to one found on Diamond’s [2004] Nutrition Literacy Scale.) Our 
items are created involving two components. The first component reflects whether the 
item included technical terminology (e.g., terms such as trans fat, saturated fat, polyun-
saturated fat), whereas the second component has to with food safety (e.g., temperatures, 
food storage, food handling). Our weight (design) matrix ( Q ) is L x S

 
 
 
 
 
	 Q  = 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

1 0

1 0

1 1

1 1

1 1

0 1

0 1

1 1

0 1

0 1

, 
 
 
 
 

where the entries in Q  reflect whether the item involves the facet (“1”) or not (“0”). For 
instance, items 1 and 2 include just technical terminology (i.e., =11 21q q  = 1, =12 22q q  = 
0), items 3–5 include both technical terminology and food safety (e.g., 31q  = 1, 32q  = 1), 
and item 6 reflects just food safety (i.e., 61q  = 0, 62q  = 1), and so on. Our scoring of the 
responses results in higher scores reflecting greater literacy than do lower scores. We 
collect data from 1000 individuals.

To calibrate our data we use the R package eRm (also see Mair and Hatzinger 
[2007]); eRm will also fit other models, such as, the partial credit and rating scale models 
using CMLE.1 Our data file, LLTM.dat, consists of 1000 binary responses occupying 
columns 9–18. The responses are read using the read.fortran function to perform a 
fixed formatted read with the FORTRAN format statement of 10I1 (i.e., 10 integers each 
occupying one column; see FORTRAN Formats below for more information). Table E.1 
shows our session.

After importing the data we examine the data frame (lltmdat) contents to verify 
the data were read correctly. Subsequently, we remove the case id variable (id) from 
lltmdat. We first perform a simple Rasch calibration followed by the LLTM calibra-
tion.

Our simple Rasch model calibration uses the RM function (rasch = RM(lltmdat)). 
The summary(rasch) function provides estimation information followed by our 
item parameter estimates. Because our problem required 18 iterations and 50 itera-
tions is the default maximum we know that we have a converged solution. The item 
location estimates are given on a difficulty scale ( δ̂ j ) and an easiness scale ( δ̂ E

j
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TABLE E.1.  Rasch and LTTM Calibrations in R Using eRm

> library(eRm)     
> lltmdat=read.fortran("LLTM.dat",c("1I8","10I1"))         # read fixed format data

> # replace default variables names (i.e., V1, …, V11) with meaningful names
> names(lltmdat)= c('id', 'i1','i2','i3','i4','i5','i6','i7','i8','i9','i10')
> head(lltmdat,6)
      id i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
1      1  1  1  0  1  0  0  1  0  0   0
2      2  1  1  0  0  1  1  0  0  0   0
3      3  1  1  1  1  0  0  0  0  0   0
4      4  1  1  1  0  0  1  0  0  0   0
5      5  1  1  0  1  1  1  0  0  0   0
6      6  1  1  1  0  0  0  0  0  0   0

> tail(lltmdat,4)
         id i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
997     997  1  1  0  1  0  1  0  1  1   0
998     998  1  1  0  0  1  0  0  0  0   0
999     999  1  1  1  1  1  1  0  0  0   0
1000   1000  1  1  0  0  0  0  1  0  0   0

> lltmdat=within(lltmdat, rm(id))                       # remove id from data frame

> # Rasch model calibration
> rasch=RM(lltmdat)	
> summary(rasch)

Results of RM estimation: 

Call:  RM(X = lltmdat) 

Conditional log-likelihood: -3539.35 
Number of iterations: 18 
Number of parameters: 9 

Item (Category) Difficulty Parameters (eta): with 0.95 CI:
    Estimate Std. Error lower CI upper CI
i2    -1.504      0.080   -1.660   -1.348
i3    -1.091      0.073   -1.233   -0.948
i4    -0.437      0.066   -0.567   -0.307
i5    -0.078      0.065   -0.206    0.050
i6     0.306      0.066    0.178    0.435
i7     0.426      0.066    0.296    0.555
i8     0.889      0.069    0.753    1.024
i9     1.557      0.078    1.404    1.710
i10    2.088      0.090    1.912    2.264

Item Easiness Parameters (beta) with 0.95 CI:
         Estimate Std. Error lower CI upper CI
beta i1     2.155      0.096    1.967    2.344
beta i2     1.504      0.080    1.348    1.660
beta i3     1.091      0.073    0.948    1.233
beta i4     0.437      0.066    0.307    0.567
beta i5     0.078      0.065   -0.050    0.206
beta i6    -0.306      0.066   -0.435   -0.178
beta i7    -0.426      0.066   -0.555   -0.296

(continued)
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TABLE E.1.  (continued)

beta i8    -0.889      0.069   -1.024   -0.753
beta i9    -1.557      0.078   -1.710   -1.404
beta i10   -2.088      0.090   -2.264   -1.912

> raschfit=LRtest(rasch,splitcr="median")
> raschfit      # show fit stats
    Andersen LR-test: 
    LR-value: 10.856 
    Chi-square df: 9 
    p-value:  0.286

> # the following plot produces Fig. E1: “Wright Map”, Item-Person map 
> plotPImap(rasch)   

> # the following plot produces Fig. E2: Empirical & Predicted IRFs 
> plotICC(rasch,item.subset = 1:1, empICC = list("raw"), mplot = TRUE,  
legpos = FALSE, ask = FALSE)

> # the following plot produces Fig E3: graphical check for misfitting items
> plotGOF(raschfit,conf=list(ia=FALSE,col="black"))

> # LLTM calibration
> Q=matrix(c(1,1,1,1,1,0,0,1,0,0,0,0,1,1,1,1,1,1,1,1),ncol=2)    # create Q matrix
> lltm=LLTM(lltmdat,Q)                                           # LLTM calibration
> summary(lltm)

    Results of LLTM estimation: 

    Call:  LLTM(X = lltmdat, W = Q) 

    Conditional log-likelihood: -3947.843 
    Number of iterations: 8 
    Number of parameters: 2 

    Basic Parameters eta with 0.95 CI:
          Estimate Std. Error lower CI upper CI
    eta 1    1.129      0.050    1.032    1.227
    eta 2   -1.597      0.073   -1.740   -1.454

    Item Easiness Parameters (beta) with 0.95 CI:
             Estimate Std. Error lower CI upper CI
    beta i1     1.129      0.050    1.032    1.227
    beta i2     1.129      0.050    1.032    1.227
    beta i3    -0.467      0.099   -0.662   -0.273
    beta i4    -0.467      0.099   -0.662   -0.273
    beta i5    -0.467      0.099   -0.662   -0.273
    beta i6    -1.597      0.073   -1.740   -1.454
    beta i7    -1.597      0.073   -1.740   -1.454
    beta i8    -0.467      0.099   -0.662   -0.273
    beta i9    -1.597      0.073   -1.740   -1.454
    beta i10   -1.597      0.073   -1.740   -1.454

> print((GsqrR=(-2*lltm$loglik)) # done for pedagogical reason, G sqr reduced model 
    [1] 7895.687

> print((GsqrF=(-2*rasch$loglik))   # done for pedagogical reason, G sqr full model
    [1] 7078.7

(continued)
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TABLE E.1.  (continued)

> # Calculate G square
> print((Gsqr=GsqrR-GsqrF)) # or more concisely: (-2*lltm$loglik)-  
    (-2*rasch$loglik)
    [1] 816.9862

> print((GsqrDF=rasch$npar-lltm$npar)       # obtain dfs
> GsqrDF
    [1] 7

> qchisq(.95,df=GsqrDF)                     # obtain critical value
    [1] 14.06714

> cor(lltm$betapar,rasch$betapar)           # obtaining corr betw Rasch & LLTM
    [1] 0.8478063

> # the following plot produces Fig. E4
> plot(lltm$betapar,rasch$betapar,xlim=c(-3,3),ylim=c(-3,3),ylab= "Rasch Easiness  
    Location",xlab="LLTM Easiness Location")

> PersonEstLLTM=person.parameter(lltm)      # abstract MLE of person location est
> PersonEstLLTM

    Person Parameters:

     Raw Score   Estimate Std.Error
             0 -3.0247922        NA
             1 -2.0120574 1.1165795
             2 -1.0679091 0.8683352
             3 -0.4063419 0.7692289
             4  0.1438121 0.7197200
             5  0.6443882 0.6994835
             6  1.1340521 0.7043722
             7  1.6511136 0.7398455
             8  2.2574839 0.8299285
             9  3.1286312 1.0808306
            10  4.0648431        NA

> summary(PersonEstLLTM)

    Estimation of Ability Parameters

    Collapsed log-likelihood: -43.13987 
    Number of iterations: 10 
    Number of parameters: 9 

    ML estimated ability parameters (without spline interpolated values): 
                  Estimate Std. Err.      2.5 %    97.5 %
    theta P1     0.1438121 0.7197200 -1.2668133 1.5544374
    theta P2     0.1438121 0.7197200 -1.2668133 1.5544374
    theta P3     0.1438121 0.7197200 -1.2668133 1.5544374
    theta P4     0.1438121 0.7197200 -1.2668133 1.5544374
    theta P5     0.6443882 0.6994835 -0.7265742 2.0153506
                                  :
    theta P999   1.1340521 0.7043722 -0.2464921 2.5145963
    theta P1000 -0.4063419 0.7692289 -1.9140028 1.1013191

> plot(PersonEstLLTM)                  # produces Fig. E5: plot estimates against X
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) where δ̂ j = δ− ˆ E
j . Examining the Difficulty Parameters table shows that 

item 1 is absent. To obtain its value we can either take the negative of item 1’s δ1
ˆ E  

(beta i1) so that δ1
ˆ = –1*δ1

ˆ E = –1*2.155 = –2.155 or take the negative of the sum of  

the remaining items δ1
ˆ = – δ

=
∑
L

2

ˆ
j

j

= –2.156 (rounding error). Accordingly, we have  

δ1
ˆ = –2.155, δ2

ˆ = –1.504, δ3
ˆ = –1.091, etc. or on the easiness scale (Easiness Param-

eters) we have δ1
ˆ E = 2.155, δ2

ˆ E = 1.504, δ3
ˆ E = 1.091, and so on. (To obtain person loca-

tion estimates we would use PersonEstRasch= person.parameter(rasch).) To 
compare how our respondents’ distribution relates to our scale’s item distribution we 
request a (Wright) item-person map (plotPImap(rasch); Figure E.1). This plot shows 
each item’s δ̂ E

j  as a dot with respect to the item label (i.e., i1, i2, …, i10) and the distri-
bution of respondents (top panel: Person Parameter Distribution). As can be 
seen, our scale measures across the continuum and maps to almost all of our (except the 
extreme) respondents.

We use the LRtest with a median split (criterion) for the observed scores to 
determine if the data fit the Rasch model. Because the likelihood ratio test’s p-value 
is greater than 0.05 it appears the data are consistent with the Rasch model. From 
the Conditional log-likelihood line we have lnL = –3539.35 so that our 2

FG  

FIGURE E.1. I tem-Person map (Wright map).
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= –2lnL = –2(–3539.35) = 7078.7 for L – 1 = 9 location parameters; we will use this 
below.

In addition to this model-level fit, we can graphically examine our item-level fit 
using two graphical techniques. The first is the plotICC function. As an example, for 
item 1 we use plotICC(rasch,item.subset = 1:1, empICC = list(“raw”), 
etc.) with the empICC argument (Figure E.2). As can be seen, we have good agreement 
between the predicted IRF (line) and the empirical IRF (circles).

The second graphical approach is the goodness of fit (GOF) plot. For the GOF the 
respondents are first split into two groups based on the mean and then the item location 
estimates from each group are plotted against one another (Figure E.3). Accordingly, the 
GOF plot simultaneously examines all the items rather than the item-wise approach of 
the empirical/predicted plot. We use the plotGOF function with confidence ellipses 
(plotGOF(raschfit, conf=list(ia=FALSE,col=”black”))). Ideally, the items 
(the small circles) would fall on the identity (diagonal) line and thereby indicate perfect 
fit. Items appearing further away from the line reflect poorer fitting items. However, 
because of estimation error we do not expect that all items would fall on the identity line 
even in a perfect fit situation. The use of confidence ellipses takes into account estima-
tion error. Thus, if an item’s ellipse includes (“covers”) the identity line we consider the 
item to exhibit fit. Because all of our items’ confidence ellipses cover the line we con-
clude that we have item-level fit as well as additional evidence of model-data fit.

FIGURE E.2.  Rasch empirical and predicted IRFs.
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Given our model-data fit we proceed to perform our LLTM analysis by creating the 
Q  matrix (Q=matrix(c(1, 1, 1, 1, 1, 0, 0,…, 1),ncol=2)) and providing 
it along with the data frame as arguments to the LLTM function (LLTM(lltmdat,Q)). 
As above, we use the summary function to see our results. Our LLTM’s 2

RG  = –2lnL is 
–2(–3947.843) = 7895.687 with two basic parameters. Because the LLTM is a restricted 
(i.e., reduced) version of the Rasch model we can use the likelihood ratio (LR) statistic 
to determine whether the additional complexity of the Rasch model leads to a significant 
improvement in fit over the LLTM. Our statistic is

	
 
 

∆ = − = − − − = − 
2 2 22 ln ( 2ln ) ( 2ln )R

R F R F
F

L
G L L G G

L
,

where 2
RG  is –2lnL for our reduced model (LTTM) and 2

FG  represents the –2lnL our 
full model (Rasch). Assuming the Rasch model holds then our statistic is asymptoti-
cally distributed as a chi square with df = L – 1 – S (Fischer & Formann, 1982); that 
is, the null hypothesis is that the data are consistent with the LLTM and the Rasch 
model is the alternative hypothesis. (We can perform these calculations in R by GsqrR= 
(-2*lltm$loglik) to obtain 2

RG  and GsqrF=(-2*rasch$loglik) to obtain 2
FG .) 

Our ∆ 2G  (Gsqr=GsqrR-GsqrF)

	 ∆ 2G  = 7895.687 - 7078.7 = 816.9862

FIGURE E.3.  Split half plot.

56	 Appendix E	



Because our ∆ 2G  exceeds a critical value of 14.06714 with df = 10 – 1 – 2 = 7 the Rasch 
model fits significantly better than the LLTM. Given that the LLTM model has only two 
parameters (i.e., η1 , η2 ) it is not surprising that its –2lnL is larger than with the Rasch 
model.

As is typically the case, the Rasch model-data fit is comparatively better than with 
the LLTM (see Fischer & Formann, 1982). Fischer and Formann (1982) suggest calcu-
lating the correlation between the Rasch model’s and LLTM’s item location estimates. A 
high correlation reflects that the Q  matrix is accounting for the variability observed in 
the item locations. For our example, the correlation is 0.8478 (cor(lltm$betapar, 
rasch$betapar)). Therefore, approximately 72% ( 2r  = 0.84782 = 0.7188) of the vari-
ability in the Rasch δ̂ sE

j  is shared with those of the LLTM. Figure E.4 shows that the 
correlation’s magnitude is an accurate reflection of the linear relationship between the 
two sets of item location estimates. Thus, our Q  provides a reasonable reflection of the 
nutrition literacy item locations.

Our basic parameter estimates are η1
ˆ = 1.129 and η2

ˆ  = –1.597 with item location 
estimates on the easiness scale of δ1

ˆ E = 1.129, δ2
ˆ E = 1.129, δ3

ˆ E = –0.467, and so on. Our 
basic parameters indicate the technical terminology component is easier than food 
safety component. Thus, any items that have only the technical terminology character-
istic will tend to be easier than those items that have only the food safety characteristic.

To obtain our person location estimates we use the person.parameter func-
tion and store the estimates in the PersonEstLLTM object (PersonEstLLTM = 
person.parameter(lltm)). The estimate column contains our θ̂s . Because the 

FIGURE E.4.  Scatterplot of Rasch ˆ sE
jδ  against LLTM ˆ sE

jδ .
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LLTM belongs to the Rasch family of models there are L – 1 possible θ̂s . Displaying the 
contents of PersonEstLLTM shows the possible values (e.g., X = 1 corresponds to θ̂  = 
–2.0120574, θ̂( )es = 1.1155795). In Figure E.5 we have a plot of our 9 possible θ̂s  against 
their corresponding observed scores. To obtain the θ̂  for each case we use the summary 
function (summary(PersonEstLLTM)). As can be seen, the first four respondents are 
estimated to be located at 0.1438121 ( θ̂( )es = 0.7197200) and are approximately average 
in nutrition literacy.

NOTES

1.  An alternative to using eRm is to use the regression approach discussed above or SAS 
procedure glimmix. Tables E.2 and E.3 shows the command file and part of the corresponding 
output. The Solutions for Fixed Effects table shows that η1  = 1.3985 and η2  = –1.0746. 
To obtain the item location estimates one applies η∑ js sq . For example, δ1

ˆE  = η η+11 1 12 2q q  = 
1(1.3985) + 0(–1.0746) = 1.3985, δ3

ˆE = η η+31 1 32 2q q  = 1(1.3985) + 1(–1.0746) = 0.3239, and so on. 
These estimates correlate 0.981 with those of eRm.

FIGURE E.5.  Scatterplot of θ̂  against X.
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TABLE E.3. proc glimmix for Rasch Calibration

The command file:

proc glimmix data=stacked_data noclprint  method=laplace;
  title "“Rasch” fixed items & random P; w/o intercept ";
  class item person;
  model x(event='1')= item /noint dist=binary link=logit solution;
  random intercept/subject=person  solution; 
  output out=fit_statistcs2 resid(ilink)=residual2
         variance(ilink)=variance2;
run;

Abridged output:
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Mixture IRT models address situations involving a mixture of latent subpopulations. 
These subpopulations are qualitatively different but within which a measurement model 
based on a continuous latent variable holds. In this modeling framework, one can char-
acterize respondents by both their location on a continuous latent variable as well as by 
their latent subpopulation (class) membership. Although non Rasch models can be used 
in mixture modeling our presentation will focus on the Rasch mixture model.

Mixture models may be applicable when the Rasch/1PL model may not fit the popu-
lation of interest, but does fit subpopulations. For instance, one may observe varying 
item discrimination because the calibration sample reflects a mixture of (homogeneous) 
subpopulations. In this case, when we apply the Rasch/1PL model to each subpopula-
tion we might obtain model–data fit. As such, a mixture Rasch provides an alternative 
approach for addressing the lack of model–data fit. In addition, mixture models may be 
useful with multidimensional data. As mentioned in the first chapter, in some cases the 
latent space may be conceptualized as consisting of both latent classes and latent conti-
nua. This section first presents a general introduction to latent class analysis (LCA) and 
then introduces the integration of LCA with IRT; LCA is briefly introduced in Chapter 1.

LATENT CLASS ANALYSIS

In contrast to IRT’s assumption of a continuous latent variable, in LCA the latent con-
struct is assumed to be categorical. Specifically, the latent construct consists of a set of 
mutually exclusive and exhaustive latent classes that account for the manifest relation-
ships between any two or more items on an instrument (Stouffer, 1950). That is, we 
believe that our sample consists of a mixture of qualitatively different types of persons. 
The latent classes are subpopulations of individuals that are homogeneous with respect 
to the variable of interest. These subpopulations are not manifest groupings (e.g., high- 
versus low-proficiency groups, gender, ethnicity), but are unobserved. Moreover, these 
latent classes may or may not be ordered. LCA may be used with either dichotomous or 
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polytomous response data that are assumed to be a manifestation of two or more latent 
classes of respondents.

As an example, assume we wish to measure anxiety by administering a scale, such 
as, the Taylor Manifest Anxiety Scale (Taylor, 1953). We conceptualize our latent vari-
able anxiety as categorical in nature. The latent class analysis of our response data might 
lead us to classify respondents into qualitatively different latent groups so, for example, 
one class may be interpreted as representing individuals with incapacitating anxiety 
and a second class reflecting respondents with transient anxiety. Because LCA involves 
comparing individuals in terms of their latent class memberships, rather than their 
locations on a continuous latent variable, we talk about the respondents in terms of 
their similarities within a class or their dissimilarities across classes, but not in terms 
of degree of their anxiety.

LCA characterizes an item in terms of the probability of a randomly drawn individ-
ual from a particular latent class providing a particular response. To develop the basic 
latent class model assume that we administer an instrument developed to measure gen-
eral anxiety. For simplicity let the items be scored to produce dichotomous responses. 
Each item j on the instrument is characterized by a conditional item probability ( νπ j ) 
in each of G latent classes (υ  = 1 … G). This conditional item probability specifies the 
probability that a respondent in latent class υ  obtains a response of 1 on item j. For 
instance, in a proficiency context the conditional item probabilities would reflect the 
item’s difficulty for a latent class. Additionally, each latent class υ  is characterized by 
its latent class proportion ( νπ ). In other words, νπ  is the proportion of respondents 
in the sample that belong to latent class υ . (Note that a double script on π  indicates 
a conditional item probability, whereas a single subscript reflects a latent class propor-
tion.) Because the latent class set is exhaustive the sum of all the latent class proportions  

is 1 ( ν
ν

π
=

∑
G

1

 = 1). The latent class proportions and conditional item probabilities are the  

person and item parameters estimated in LCA.
To obtain a basic model we define the probability of a response vector ix  for a latent 

class ν  as

	 ν νν π π −

=
= −∏

L
(1 )

1

( | ) (1 )ij ijx x
i j j

j

p x ,	 (F.1)

where ν( | )ip x  is the conditional probability for respondent i’s response vector ix  and 

νπ j  is the conditional item probability for item j in latent class ν . Stated in words, Equa-
tion F.1 specifies the chance of observing the response vector ix  given that respondent 
i is in latent class ν . These probabilities are conditional on the respondent’s latent class 
membership and are a function of the each item’s conditional item probability for the 
class ( νπ j ) and respondent i’s response to the item. Because LCA assumes conditional 
independence Equation F.1 is an application of the multiplication rule for independent 
events. Consequently, item responses are assumed independent within a latent class 
(i.e., conditional on latent class membership).

Equation F.1 is the basis for predicting to which latent class a respondent is most 
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likely to belong. To predict a respondent’s class membership given their response vector 
we need to know the probabilities for each latent class. That is, what is the probability 
of having observed respondent i’s response vector if they belong to latent class 1, what 
is the probability of the observed response vector if they are in latent class 2, and so on. 
To obtain this overall probability for respondent i’s response vector (i.e., irrespective of 
latent class) we need to take into consideration the latent class sizes (i.e., νπ ). These 
latent class proportions serve to weight the conditional probabilities of respondent i’s 
response vector. Therefore,

	 ν ν ν
ν ν

π ν π π π −

== =

 
= ⋅ = − 

  
∑ ∑ ∏
G G L

(1 )

11 1

( ) ( | ) (1 )ij ijx x
i i c j j

j

p px x νπν ν ν
ν ν

π ν π π π −

== =

 
= ⋅ = − 

  
∑ ∑ ∏
G G L

(1 )

11 1

( ) ( | ) (1 )ij ijx x
i i c j j

j

p px x ,	 (F.2)

where ( )ip x  is the unconditional probability for individual i’s response vector ix , 
ν( | )ip x  is the conditional probability for respondent i’s response vector ix  given by 

Equation F.1, and the other terms are defined above. Equation F.2 tells us the probabil-
ity of observing individual i’s responses regardless of their class membership, whereas 
Equation F.1 tells us the probability of observing respondent i’s responses given a latent 
class. By way of analogy, Equation F.1 tells us the probability of randomly selecting a 
person who is left-handed from a particular gender, whereas Equation F.2 tells us the 
probability of randomly selecting a left-handed person regardless of their gender.

As mentioned above, LCA involves comparing individuals in terms of their latent 
class memberships. Accordingly, we need to predict latent class membership for each 
member of our sample. To make this prediction we determine to which latent class each 
respondent has the highest probability of belonging. This probability is determined by 
using Equations F.1 and F.2 as well as Bayes’ Theorem to obtain Equation F.3. Equation 
F.3 gives us the (posterior) probability of membership in latent class ν  given person i’s 
responses

	
ν

ν ν ν
ν

ν πν
π π π −

==
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=
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Equation F.3 is calculated for each latent class given a respondent’s responses. Each 
respondent is assigned to whichever latent class has the largest membership probability. 
Because we calculate the probability of a given response pattern for each latent class all 
persons with the same response pattern are classified in the same latent class.

We can extend these ideas to an instrument with L items and m possible (i.e., 
polytomous) responses to obtain the probability of an individual’s particular response 
pattern x  given their membership in latent class ν  by

	 ν( | )p x  = π
= =

∏∏
L m

|
1 1

( ) kjx
k jv

j k

, 	 (F.4)

where the π |k jv  is the conditional probability and reflects the conditional probability 
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of the observed response k given item j and the individual’s membership in latent class 
ν . The exponent kjx  equals 1 if and only if =jx k . The unconditional probability of 
the observed response vector x is the weighted average of the conditional probabilities 
across the G latent classes

	 ( )p x  = ν
ν

π ν
=

∑
G

1

( | )p x .	 (F.5)

One may conceive of a situation where, with a large number of ordered latent classes, 
there would be little difference between conceptualizing the latent variable as continu-
ous or as categorical. In point of fact, Lindsay, Clogg, and Grego (1991) show that a latent 
class model with G ≥ (L + 1)/2 latent classes gives the same estimates of item parameters 
as the Rasch model; also see Masters (1985).1 For example, for a data set with L = 4 items, 
a latent class model with at least three latent classes would provide item characteriza-
tions “equivalent” to those of the Rasch model that uses only item location parameters. 
Both Clogg (1995) and Dayton (1998) provide readable introductions to LCA.

MIXTURE RASCH MODEL

Some empirical situations involve a mixture of latent subpopulations such that there 
are qualitative differences between the subgroups but within each subpopulation there 
is a continuous latent variable. To provide some context assume we develop a tempera-
ment scale that uses a force-choice format with two alternatives that represent opposite 
poles (e.g., extraversion or introversion). For example, one item’s stem might be “When 
I feel drained from a long work week”: (a) “I like to spend time by myself to ‘recharge.’ ” 
or (b) “I like to get together with friends and go out to ‘recharge.’ ” The “a” response is 
coded as a 1 (i.e., the introversion choice is coded as 1), 0 otherwise. Thus, the right side 
of the E-I (the theta scale) continuum would reflect introversion and the left side would 
be associated with extraversion. However, if our sample reflected a mixture of latent 
subpopulations that differ with respect to self-disclosure (one subpopulation reflects 
“non-discriminatory self-disclosure,” whereas the other reflects “selective self-disclo-
sure”), then these two classes could interact with how individuals respond on the tem-
perament E-I scale. Stated another way, an individual’s propensity to endorse one choice 
over the other is affected by whether they are a member of the “selective self-disclosure” 
class or the “non-discriminatory self-disclosure” class. We can model this situation by 
using mixture IRT —an integration of IRT and LCA.

In the current context of mixture models, assume the data consist of a mixture of 
subpopulations that are different from one another in kind. Each of these subpopulations 
might be best represented as a latent class of individuals. Within each of these classes 
there is a latent continuum on which the individuals within the class may be placed and 
ordered. That is, there are both qualitative and quantitative differences among individu-
als with respect to the same items (e.g., Rost, 1990). In effect, we have IRT model-data 
fit within each class, but not across the classes. Therefore, each item has parameter esti-
mates for each class. (In the simplest case, there is only one latent class and the calibra-

64	 Appendix F	



tion sample contains only members from a single class. As a result, one has model-data 
fit with a simple IRT model.) The gist of the application of mixture models is to “unmix” 
the data into a set of classes, determine the classes’ sizes, assign individuals to classes, 
and estimate the person and item parameters for each class.

A mixture model involves parameters having to do with latent classes and IRT item 
and person parameters. As mentioned above these latent classes are mutually exclusive 
and jointly exhaustive. The symbolic representation of the mixture model for person i 
and item j is similar to Equation F.6, but with the conditional response probability given 
by an IRT model

	 ijp  = ν ν
ν

π
=

∑
G

1
ijp .	 (F.6)

The IRT model may be a dichotomous model, such as the Rasch model (Mislevy 
& Verhelst, 1990; Rost, 1990, 1991), or a model for ordered response categories (Rost, 
1991) or unordered response categories (Bolt, Cohen, & Wollack, 2001).2 For example, 
for the mixed 1PL model νijp  is

	 ν ν νθ α δ=( 1, , , )j jp x  = 
ν ν ν

ν ν ν

α θ δ

α θ δ

−

−+

( )

( )
1

j

j

e

e
,	 (F.7)

where υα  is the common item discrimination in latent class ν , νδ j  is item j’s location 
in latent class ν , and νθ  is the person location in latent class ν . Equation F.7 specifies 
the probability of a response of 1 on item j as a function of an individual’s latent class 
membership (indexed by ν ), their location on the continuum ( νθ ) within latent class 
ν , and item j’s parameters for the relevant latent class ( να and νδ j ). If να  = 1.0, then 
Equation F.7 becomes the mixture Rasch model or mixed Rasch model (Rost, 1990, 1991).3 
The IRT assumptions discussed in Chapter 2 hold within each latent class.

As is the case when applying IRT and LCA to empirical data we need to first deter-
mine the latent structure of our data. To accomplish this we fit a series of models with 
an increasing number of latent classes. For instance, we would fit a one class model to 
determine if multiple classes are necessary and then proceed to fit a two class model, a 
three class model, and so on. Assessing the model-data fit across this series model would 
involve fit indices such as AIC, consistent AIC (CAIC, Bozdogan, 1987), BIC, SABIC, or 
a statistical significance test such as the chi-squared difference test (i.e., the likelihood-
ratio chi-squared test); AIC, BIC, and SABIC are discussed in Chapter 5. (Additional 
information concerning fit statistics may be found in Nylund, Asparouhov, and Muthén 
[2007].) The chi-squared difference test is applied between successive hierarchical mod-
els (e.g., a two- versus a three-latent class model) to determine if the additional latent 
class is necessary. A non-significant chi-squared difference test indicates that the model 
with the smaller number of latent classes is preferred over the model with the larger 
number of classes. With respect to the information criteria, models with the smaller 
information index exhibits better relative fit than models with larger information index 
values.

In addition to our numeric indices we also use latent class interpretability to aid in 
determining the latent class structure. For example, if our indices indicate a three-class 
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model is preferred to a two-class model, but we cannot interpret the all of the classes 
then a three-class structure is suspect. Moreover, if we can interpret the two-class struc-
ture, then we would select the two-class model over the three-class model. Of course, 
available theory should inform the number of latent classes retained.

Specialized software such as MIRA (Rost & von Davier, 1992), WINMIRA (von 
Davier, 2001), and the R packages mRm (Preinerstorfer, 2016), mixRasch, psychomix 
(Frick, Leisch, Strobl, Wickelmaier, & Zeileis, 2020; Frick, Strobl, Leisch, & Zeileis, 
2012) can be used to estimate the mixture model’s parameters for some of the members 
of the Rasch family of models. WINBUGS (Spiegelhalter, Thomas, Best, & Lunn, 2004) 
may also be used to estimate the model’s parameters (see Bolt et al., 2001).

In addition to their use in addressing varying item discrimination, mixture mod-
els have been applied to the situation in which the latent classes represent different 
problem-solving strategies (Mislevy & Verhelst, 1990). For instance, imagine that a test 
item consists of a three-dimensional object. Participants are then shown a second object 
that may be the first object, albeit from a different perspective. The participants are 
asked whether the second object is the same as the first. In this example, one class could 
consist of individuals who employ a mental rotational strategy to solve the problem, 
whereas a second class might consist of people employing analytical reasoning to detect 
feature(s) that match without performing the rotation.

As a second potential application example, assume one administers an instrument 
designed to measure social anxiety to a sample of individuals. This sample may consist 
of a mixture of three latent populations or classes. Class interpretation shows that one 
class is comprised of persons who suffer from major depression, another class as con-
sisting of persons who suffer from hebephrenia, and a third class contains persons who 
are neither of these types of individuals. Although it may be possible to measure social 
anxiety on a unidimensional continuum within each class, it may not be possible to 
place each of these individuals on a single social anxiety unidimensional continuum.

EXAMPLE: APPLICATION OF THE MIXTURE RASCH MODEL 
TO WRITING PROBLEM DATA, CMLE, WINMIRA

For this example we analyze data from a study designed to understand the nature of 
writing problems. Specifically, we wish to identify students that might have misconcep-
tions and/or are utilizing potentially erroneous strategies that lead to writing problems. 
Along with a measure of writing knowledge (i.e., planning, organization, multiple drafts, 
revision strategies), the student participants are given either a verbal or pictorial writing 
prompt to assess their writing ability. Two raters holistically judge the participants’ writ-
ing samples for verbal complexity (age-appropriate vocabulary, sentence structure) and 
syntactic correctness (age-appropriate spelling, handwriting, capitalization, and punc-
tuation). Responses on writing knowledge are scored as correct or incorrect, whereas 
verbal complexity and syntactic correctness are each judged on a four-point scale with 
larger values indicating greater competence than lower values. Our data come from a 
sample of secondary schools. We collect data on 1174 student participants, seventy-nine 
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percent of whom are white with females accounting for 52% of the sample. Other demo-
graphic information is also collected.

In this example we use WINMIRA (von Davier, 2001) for estimation followed by a 
reanalysis using the R package psychomix; Endnote 4 shows a Mplus command file for 
performing a two-class mixture Rasch model analysis. WINMIRA is designed for the 
Rasch model for dichotomous and polytomous data and utilizes a graphical user inter-
face. Thus, there is no syntax to present. Through the completion of a series of menus 
and dialogs we import our data, select our items to be analyzed, specify the number of 
latent classes, the mixed Rasch model to use, as well as output options. The data may 
be in a delimited ASCII format (tab, space, comma, etc.) or a SPSS data file. By default, 
WINMIRA uses the random start value of 4321 for its EM algorithm; this value can be 
changed to address local minima concerns. Example screen shots are shown in Figure 
F.1.

FIGURE F.1.  WINMIRA Screen Shots for retrieving a csv data file (top) and specification of 
a mixture IRT model (bottom).
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We examine multiple class models ranging from one to three classes. The program 
creates one ASCII output file per latent class with the extension “.OU#” where # is either 
“T” or a numeral. From the Job Definition menu’s Output Options item’s dialog 
we check several check boxes (e.g., ‘categories probabilities,’ ‘item thresh-
old parameters,’ ‘person parameter estimates,’ ‘add person param-
eters,’ ‘item fit (Q-index)’). The information criteria for the one- through three-
class solutions are presented in Table F.1 with the abridged output from the two-class 
solution shown in Table F.2.

For each of our models we check for a converged solution by verifying that the 
Number of iterations needed is less than the max. number of itera-
tions. For example, the two-class solution required 493 iterations with a maximum of 
1000 iterations (see Table F.2). Table F.1 shows that all three information criteria indi-
cate that the two-class solution exhibits the best relative model-data fit.5 Therefore, we 
proceed to interpret the two-class solution to ensure that these classes are meaningful.

Our interpretation shows that latent class one consists of 826 participants who 
are knowledgeable about the writing process with an average number correct score on 
the writing knowledge measure of 5.00. Moreover, these participants could apply this 
knowledge in writing performance as exhibited in the verbal complexity and syntactic 
correctness of their writing samples (verbal M = 3.05, syntactic M = 3.05) regardless of 
prompt type. In contrast, the second class is composed primarily of participants (n = 
348) who were less knowledgeable about the writing process (writing knowledge M = 
1.65) and whose writing tends to not be seen as verbally complex and syntactically cor-
rect (verbal M = 1.98, syntactic M = 1.86) as members of the first latent class. Addition-
ally, it appears that latent class 2 members tend to do better with pictorial prompts than 
with verbal prompts; latent class 1 members’ performance did not seem to be affected by 
the type of prompt. With latent class proportions of π =1  0.69 and π =2  0.31 we see that 
latent class 1 is almost twice the size of latent class 2 indicating that the majority of the 
participants are expected to be proficient in writing. On the basis of the combination of 
the fit information and our ability to interpret the two latent class solution we accept the 
two-class model for these data.

The output consists of general information about data input, descriptive statistics, 
followed by sections on each latent class, and then goodness of fit information (e.g., AIC, 
BIC) at the model level (Table F.2). Within each class section we have student location 
estimation (Expected Score Frequencies and Personparameters <sic>) 
followed by item parameter estimation information: estimated item locations, standard 
errors, and item-level fit information.

The Expected Score Frequencies and Personparameters section 
shows that a student that obtained a Rawscore of 1 in CLASS 1 of 2 is unlikely 
to be observed because we expect that 0.05% (i.e., 0.41/(0.69217*1174)*100%) of latent 
class 1 participants will have a number correct score of 1. Nevertheless, all participants 
with a X = 1 will be estimated to be located at –2.053 on the writing ability continuum 
(θ =11

ˆ -2.053) with a θ̂( )es  = 1.117; we use Warm’s weighted likelihood estimates (Warm, 
1989), WLE estimate, because these are available for all possible number correct 
scores and are less biased than the MLEs.
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TABLE F.1. Model-Data Fit Indices, Latent Class Proportions, 
and LC Characteristic

Index G = 1 G = 2 G = 3

AIC 9172.74 9066.71 9075.41

BIC 9213.28 9152.87 9207.18

CAIC 9221.28 9169.87 9233.18

cπ G = 1 G = 2 G = 3* (*off due to rounding)

1 1 0.69 0.35

2 0.31 0.33

3 0.31

G2 analysis

1 2 3

lnL –4578.37 –4516.35 –4511.70

# parameters 8 17 26

–2lnL 9156.74 9032.70 9023.4

G2 124.04 9.30

df 9 9

p 0.0000 0.4101

LC characteristics for G = 2.

LC Verbal Complexity Syntactic Correctness Prompt Type WK

1 3.05 3.05 Verbal 54.5% 5.00
Pictorial 45.5%

2 1.98 1.86 Verbal 23.7% 1.65
Pictorial 76.3%

LC

Prompt Type

Verbal Complexity Syntactic Correctness

1 Verbal 3.08 3.08
Pictorial 3.02 3.01

2 Verbal 1.00 1.89
Pictorial 2.31 1.85
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TABLE F.2. Abridged WINMIRA Output for G = 2 Solution

// WINMIRA 2001 1.45
 // (c) 2000,2001 by Matthias von Davier
 //               IPN - institute for science education
 //               Olshausenstrasse 62
 //               24098 Kiel
 //               Germany
:
Filenames: 

      data: C:\...\writingprob.sav
    output: C:\ ...\writingprob.OU1
  patterns: C:\ ...\writingprob.PAT

 number of persons           :   1174
 number of items             :      8
 number of classes           :      2
 max.  number of iterations   :   1000
 accuracy criterion          : 0.0005
 random start value          :   4321

 item labels and sample frequencies:              ← category response frequencies (e.g., 987 
no.|   label     | cats |   0  |   1  |    N      correct responses item 1)
____|_____________|______|______|______|________|
   1| I1          |    2 |  187 |  987 |   1174
   2| I2          |    2 |  245 |  929 |   1174
   3| I3          |    2 |  429 |  745 |   1174
   4| I4          |    2 |  449 |  725 |   1174
   5| I5          |    2 |  645 |  529 |   1174
   6| I6          |    2 |  695 |  479 |   1174
   7| I7          |    2 |  867 |  307 |   1174

 saturated likelihood         :        -4459.4158      ← theoretical maximum based on
 number of different patterns :           89          saturated modela

 number of possible  patterns :          128           ← = mL

 Number of iterations needed:  493

 fitted model: (MIRA) Mixed Rasch Model with smoothed score frequencies: 
according to the  ordinal (partial credit) model in 2 latent classes.

Classes are sorted by class size!
Final estimates in CLASS 1 of 2 with size  0.69217                    ← 1̂π
 ====================================================

 Expected Score Frequencies and Personparameters:
   score frequency  | person parameters and standard errors:         ← 1îθ
   Raw-  | Expected |   MLE-   |std.  error|   WLE-   |std.  error 
   score | freq.    | estimate |    MLE   | estimate |    WLE    
  _______|__________|__________|__________|__________|__________ 
       0 |     0.01 | ******** | ******** |   -3.549 |    1.739   
       1 |     0.41 |   -2.329 |    1.189 |   -2.053 |    1.117   
       2 |     7.21 |   -1.207 |    0.971 |   -1.095 |    0.958   
       3 |    56.27 |   -0.347 |    0.895 |   -0.302 |    0.892   
       4 |   194.15 |    0.431 |    0.879 |    0.416 |    0.879   
       5 |   295.94 |    1.238 |    0.933 |    1.140 |    0.922   
       6 |   199.31 |    2.277 |    1.150 |    1.988 |    1.069   
       7 |    59.30 | ******** | ******** |    3.389 |    1.680   

(continued)
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TABLE F.2. (continued)

 WLE estimates : Mean        =   1.218 Var =   0.858 stdev =   0.927
                   marginal error variance =   1.044 stdev =   1.022
                        anova reliability  =   0.451
                     Andrichs reliability  =  -0.216

 WLE = Warm´s modified likelihood estimates,
 MLE = Standard maximum likelihood estimates.

 Raw-score     : Mean        =   4.985 Stdev =   1.068

 Smoothed Score Distribution descriptives:
                  location:        tau =   8.669
                  dispersion:    delta =   5.003
                  approx.  error: RMSEA =   0.018

expected category frequencies and item scores:
    Item   |     Item`s    | relative category  
    label  | Score | Stdev |    frequencies     
  _________|_______|_______|    0    |    1    
   I1      |  0.97 |  0.18 |  0.035  |  0.965 
   I2      |  0.93 |  0.25 |  0.068  |  0.932 
   I3      |  0.77 |  0.42 |  0.232  |  0.768 
   I4      |  0.80 |  0.40 |  0.200  |  0.800 
   I5      |  0.60 |  0.49 |  0.403  |  0.597 
   I6      |  0.56 |  0.50 |  0.439  |  0.561 
   I7      |  0.36 |  0.48 |  0.638  |  0.362 

     Sum:  |  4.98

threshold parameters:  ordinal (partial credit) model               ← 1ĵδ
   item     |   item    | 
   label    | location  | threshold parameters
____________|___________
  I1        | -2.08405 
  I2        | -1.38368 
  I3        |  0.02594 
  I4        | -0.16186 
  I5        |  0.83262 
  I6        |  0.97914 
  I7        |  1.79190 

 standard errors of item parameters: 

   itemlabel |  location  | threshold parameters 
_____________|____________|______________________
 I1          |  0.1943332
 I2          |  0.1437841
 I3          |  0.0906126
 I4          |  0.0948103
 I5          |  0.0804422
 I6          |  0.0798488
 I7          |  0.0832941
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TABLE F.2. (continued)

item fit assessed by the Q-index 
  itemlabel | Q-index |    Zq    | p(X>Zq)   
 ___________|_________|__________|___________
  I1        |  0.2476 |   0.0069 | 0.49725   | -...Q!....+ |
  I2        |  0.2353 |  -0.0873 | 0.53477   | -....Q....+ |
  I3        |  0.1687 |  -0.0925 | 0.53686   | -....Q....+ |
  I4        |  0.2278 |   0.0207 | 0.49175   | -...Q!....+ |
  I5        |  0.1921 |   0.0130 | 0.49483   | -...Q!....+ |
  I6        |  0.2004 |   0.1753 | 0.43044   | -...Q!....+ |
  I7        |  0.2127 |  -0.0331 | 0.51320   | -....Q....+ |

                                  -?:p<0.05, +?:p>0.95
                                  -!:p<0.01, +!:p>0.99

Final estimates in CLASS 2 of 2 with size  0.30783   :          ← 2π̂
 ====================================================

 Expected Score Frequencies and Personparameters:

   score frequency  | person parameters and standard errors:    ← 2îθ
   Raw-  | Expected |   MLE-   |std.  error|   WLE-   |std.  error 
    score | freq.    | estimate |    MLE   | estimate |    WLE    
  _______|__________|__________|__________|__________|__________ 
       0 |    46.42 | ******** | ******** |   -3.414 |    1.682   
       1 |   102.83 |   -2.296 |    1.154 |   -2.016 |    1.077   
       2 |   117.68 |   -1.242 |    0.944 |   -1.148 |    0.934   
       3 |    69.58 |   -0.412 |    0.891 |   -0.392 |    0.890   
       4 |    21.25 |    0.380 |    0.896 |    0.349 |    0.895   
       5 |     3.35 |    1.228 |    0.958 |    1.129 |    0.947   
       6 |     0.27 |    2.315 |    1.171 |    2.037 |    1.096   
       7 |     0.01 | ******** | ******** |    3.482 |    1.710   

 WLE estimates : Mean        =  -1.429 Var =   1.093 stdev =   1.046
                   marginal error variance =   1.187 stdev =   1.089
                        anova reliability  =   0.480
                     Andrichs reliability  =  -0.085

 WLE = Warm´s modified likelihood estimates,
 MLE = Standard maximum likelihood estimates.

 Raw-score     : Mean        =   1.800 Stdev =   1.132

 Smoothed Score Distribution descriptives:
                  location:        tau =  -8.301
                  dispersion:    delta =   4.045
                  approx.  error: RMSEA =   0.040

expected category frequencies and item scores:
    Item   |     Item`s    | relative category  
    label  | Score | Stdev |    frequencies     
  _________|_______|_______|    0    |    1    
   I1      |  0.56 |  0.50 |  0.439  |  0.561 
   I2      |  0.48 |  0.50 |  0.525  |  0.475 
   I3      |  0.33 |  0.47 |  0.666  |  0.334 
   I4      |  0.21 |  0.40 |  0.794  |  0.206 
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TABLE F.2. (continued)

   I5      |  0.12 |  0.33 |  0.878  |  0.122 
   I6      |  0.06 |  0.25 |  0.936  |  0.064 
   I7      |  0.04 |  0.19 |  0.964  |  0.036 

     Sum:  |  1.80

threshold parameters:  ordinal (partial credit) model           ← 2ĵδ
   item     |   item    | 
   label    | location  | threshold parameters
____________|___________
  I1        | -1.71525 
  I2        | -1.35372 
  I3        | -0.72570 
  I4        | -0.04528 
  I5        |  0.59334 
  I6        |  1.31102 
  I7        |  1.93558 

standard errors of item parameters: 

   itemlabel |  location  | threshold parameters 
_____________|____________|______________________
 I1          |  0.1258122
 I2          |  0.1240231
 I3          |  0.1284062
 I4          |  0.1443556
 I5          |  0.1724884
 I6          |  0.2237938
 I7          |  0.2909052

item fit assessed by the Q-index 
  itemlabel | Q-index |    Zq    | p(X>Zq)   
 ___________|_________|__________|___________
  I1        |  0.2148 |   0.1099 | 0.45626   | -...Q!....+ |
  I2        |  0.1861 |   0.0493 | 0.48034   | -...Q!....+ |
  I3        |  0.0982 |   0.4272 | 0.33461   | -..Q.!....+ |
  I4        |  0.2187 |  -0.5004 | 0.69160   | -....!Q...+ |
  I5        |  0.1615 |   0.2476 | 0.40223   | -...Q!....+ |
  I6        |  0.1430 |  -0.6462 | 0.74094   | -....!.Q..+ |
  I7        |  0.1840 |  -0.3810 | 0.64838   | -....!Q...+ |

                                  -?:p<0.05, +?:p>0.95
                                  -!:p<0.01, +!:p>0.99

item discrimination index:

  itemlabel  | discr.  index
 ____________|_____________
 I1          |   0.41087
 I2          |   0.43146
 I3          |   0.24690
 I4          |   0.54753
 I5          |   0.28137
 I6          |   0.32598
 I7          |   0.15607
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TABLE F.2. (continued)

person fit index descriptives:

 mean       :      -0.0308950
 std.dev.   :       0.9904008

 skewness   :      -0.4775509
 kurtosis   :      -0.6160654

statistics of expected class membership:

        | exp.  | mean  |
  class | size  | prob.  |   1  |   2  |
  ______|_______|_______|______|______|
      1 | 0.657 | 0.937 | 0.937| 0.063|
      2 | 0.296 | 0.898 | 0.102| 0.898|

 Goodness of fit statistics:
                                estimated       saturated   
                                  model           model     
  Log-Likelihood        :        -4516.35        -4459.42
  Number of parameters  :              17             127
  geom.  mean likelihood :      0.57719881      0.58121180

 Information Criteria:
   AIC-Index            :         9066.71         9172.83
   BIC-Index            :         9152.87         9816.49
   CAIC-Index           :         9169.87         9943.49

Power Divergence GoF statistics:
                                 emp.  value     chi-square p-value 
   Cressie Read            :          103.63    p=  0.6529
   Pearson Chisquare       :          105.87    p=  0.5936

 ==================================================================

   Likelihood ratio        :          113.88    p=  0.3809
   Freeman-Tukey  Chi^2    :          157.05    p=  0.0022
   Degrees of freedom      :             110

WARNING: Number of cells is larger than number of different patterns!!!
          obs.patterns/cells   = 0.695312500000000000
          number of zero cells =                   39

          The data might be very sparse, please do not use the
          chi square p-value approximation for the Power Divergence
          Goodness of Fit Statistics.
          Consider to use the parametric bootstrap procedure instead.
          In addition, several start values should be used
          (see defaults menu) in order to examine the occurance
          of local likelihood maxima.

aThe saturated model has one parameter per response pattern/score probability.
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Continuing with latent class 1 we see from the expected category fre-
quencies and item scores section that items 1 and 7 were correctly answered 
by 97% and 36% of the participants, respectively. Our estimates of these items’ locations 
are found in the threshold parameters: ordinal (partial credit) model 
section. For instance, item 1 is relatively easy in this class with an estimated location of 
–2.084 (δ =11

ˆ -2.08405; δ11
ˆ( )es  = 0.194), whereas item 7 is comparatively harder with an 

estimated location of 1.792 (δ =71
ˆ 1.79190; δ71

ˆ( )es  = 0.083).
Although we are using a mixture Rasch model items and people are on the same 

continuum within a latent class. Thus, we can predict that a participant that is member 
of LC 1 and who correctly answers only one item (i.e., X = 1, θ =11

ˆ  –2.053) has a low 
probability (0.0209) of correctly answering item 7 (i.e., an item located farther up the 
continuum from their location), but has about a 50:50 chance of correctly answering 
item 1 (i.e., an item located at about the same point as their ability).6 (Our estimated 
participant and item locations can be transformed to eliminate negative values or to a 
scale that has intrinsic meaning such as a proportion or a number correct scale.) Similar 
information for latent class 2 is found in the Final estimates in CLASS 2 of 
2 with… section.

In addition to model-level data fit information, WINMIRA also provides item-
level fit information in the item fit assessed by the Q-index section. The 
Q-index (Rost & von Davier, 1994) has a range of 0 to 1 where small values are good. A 
Q-index = 0 reflects perfect fit (a Guttman pattern), a Q-index = 0.5 indicates random 
response behavior, and a Q-index = 1 indicates perfect misfit for the model. In contrast 
to a descriptive use of the Q-index, we can use a transformed Q-index for signifi-
cance testing. This transformed Q-index, Zq, is asymptotically normal, standardized, 
and centered at 0.

In the item fit assessed by the Q-index section we find both the 
Q-index and Zq for each item in each latent class. For instance, in latent class 1 we see 
that Q-index ranges from 0.1687 to 0.2476. Thus, we have evidence supporting item-
data fit for each of our items in this latent class. Similarly, for latent class 2 the Q-index 
values show that we have item-data fit. From a significance testing perspective we want 
non-significant Zqs. As can be seen, we have non-significant Zqs for each of our items 
in each of our latent classes. Therefore, in terms of fit our two-class model exhibits the 
best relative fit of our three models and our Q-index values show item-level fit in each 
of our latent classes. For comparison, our one-class solution shows that item 3 exhibits 
misfit (Q-index = 0.1691; Zq = 1.7517 with p(X>Zq) = 0.03991).

WINMIRA provides several latent class-oriented plots. For example, Figure F.2 
presents a double-Y graphical depiction of our proficiency estimates and their frequency 
distributions for each of our latent classes. As can be seen, latent class 1 participants 
tend towards being distributed at and above X = 4, whereas latent class 2 participants 
tend to obtain fewer items correct. However, for a given number correct score the par-
ticipants are estimated to be similar in writing proficiency. For example, for participants 
in latent class 1 that correctly answered four items we would estimate their writing pro-
ficiency to be 0.416 (see dash-dot line, top panel). However, for latent class 2 participants 
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FIGURE F.2.  Latent proficiency locations and frequency distribution of X.
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who had a number correct score of 4 our estimated location for them is 0.349 (see dash-
dot line, bottom panel). Because of the class structure we know these latter participants 
would tend to respond correctly to the pictorial prompts, but not verbal prompts, as well 
as the types of problems we would see in their writing (i.e., few related ideas, stories that 
lack cohesiveness, etc.).

To examine how item responses vary across latent classes we can examine cate-
gory probability plots. For instance, Figure F.3 shows that latent class 2 members tend 
to provide more incorrect than correct responses on items 2–7 (i.e., as item difficulty 
increases in class 2), whereas latent class 1 members show the opposite pattern except 
on item 7.

The previous two plots figures are “person-oriented.” From an item perspective one 
can examine how item thresholds function within classes. For our dichotomous data 
these category thresholds are our item locations. Figure F.4 shows our item parameter 
plot. As can be seen, overall the profiles for the two classes are very similar.

Above we mention that we checked the add person parameters check box. 
The results are shown in Figure F.5 (i.e., columns PERSPAR to Z2). Our person location 
estimates and their standard errors are found in the columns PERSPAR and STDERR, 
respectively. For example, for ID = 1 we have θ11

ˆ  = 0.4161, θ11
ˆ( )es = 0.8789 and for ID = 

1174 we have θ1174,2
ˆ  = –1.1483, θ1174,2

ˆ( )es = 0.9342. The columns P1 and P2 contain the 
LC assignment probabilities (e.g., for ID = 1 we have P1 = 0.9281 and P2 = 0.0719; the 
numeral represents the LC) with the largest shown in MAXPI. The most probable class 
for the first case is latent class 1 (MAXCLASS = 1.0000) because P1 > P2. The NEWFIT 
columns show an approximately normally distributed person fit index. For the cases 
shown our values reflect response patterns that are consistent with the model.

EXAMPLE: APPLICATION OF THE MIXTURE RASCH MODEL 
TO WRITING PROBLEM DATA, CMLE, psychomix

We reanalyze our data using the R package psychomix. Because the estimation algo-
rithm in psychomix is not the same as used in WINMIRA and each program utilizes 
random number generators their respective results will be close, but not necessarily 
identical. Table F.3 shows our R session.

After reading our data into the data frame writingX and verifying the data were 
correctly read we obtain the frequency distribution of our observed score X. We have 42 
+ 55 = 97 zero-variance response vectors. Because we will subsequently use writingX 
we copy only the response vectors to a second object writing (i.e., we remove the case 
ID and X).

In our call to raschmix we use the model formula specification approach. Specifi-
cally, the outcome variables (I1, I2, … , I7) precede the tilde with any concomitant/
covariates following it. In our case, there are no covariates and so we simply specify 
a “1.” We specify the fitting of one- to three-latent class models (k = 1:3). We could 
use the which argument to have raschmix automatically select the model with the 

		  Mixture Models	 77



FIGURE F.3.  Category probability plots.
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FIGURE F.4. I tem parameter plots.
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TABLE F.3. psychomix R Session for Analysis of Writing Problem Data

> library(psychomix)
> packageVersion("psychomix")
    [1] ‘1.1.8’
> set.seed(99999)

> writingX=read.table("WritingProb.dat",header=T)

> head(writingX,n=5)
       id I1 I2 I3 I4 I5 I6 I7 X
    1  1  1  1  0  1  1  0  0 4
    2  2  1  1  1  1  1  0  0 5
    3  3  1  1  1  1  1  1  1 7
    4  4  1  1  1  1  1  1  1 7
    5  5  1  1  1  1  1  1  0 6

> tail(writingX,n=5)
           id I1 I2 I3 I4 I5 I6 I7 X
    1170 1170  1  1  0  0  0  0  0 2
    1171 1171  1  1  0  0  0  0  0 2
    1172 1172  1  0  0  1  0  0  0 2
    1173 1173  1  1  1  0  0  0  0 3
    1174 1174  0  1  1  0  0  0  0 2

> table(writingX$X) 
      0   1   2   3   4   5   6   7 
     42 116 112 134 212 292 211  55 

> # remove X & case ID from data frame
> writing=within(writingX,rm(X)); writing=within(writing,rm(id))  

> # use formula approach to specify model
> writingMix=raschmix(i1+i2+i3+i4+i5+i6+i7~1,data=writing,k=1:3,score="meanvar")  
    1 : * * *
    2 : * * *
    3 : * * *

> writingMix 	                                        # failure to converge with 3 class model
    Call:
    raschmix(formula = I1 + I2 + I3 + I4 + I5 + I6 + I7 ~ 1, data = writing, 
        k = 1:3, scores = "meanvar")

      iter converged k k0    logLik      AIC      BIC      ICL
    1    2      TRUE 1  1 -4541.771 9103.543 9153.362 8536.908
    2   71      TRUE 2  2 -4514.177 9066.355 9161.012 9072.554
    3  200     FALSE 3  3 -4507.962 9071.924 9211.418 9255.865

> # repeat analysis increasing default max iterations to a 1000; use nonformula  
approach
> d1=as.matrix(writing)   
> print((writingMix=raschmix(data=d1,k=1:3,score="meanvar",control=list(iter= 
1000))))
    1 : * * *
    2 : * * *
    3 : * * *

(continued)
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TABLE F.3.  (continued)

    Call:
    raschmix(data = d1, k = 1:3, scores = "meanvar", control = list(iter = 1000))

      iter converged k k0    logLik      AIC      BIC      ICL
    1    2      TRUE 1  1 -4541.771 9103.543 9153.362 8536.908
    2   73      TRUE 2  2 -4514.177 9066.353 9161.010 9072.605
    3  215      TRUE 3  3 -4507.897 9071.794 9211.288 9215.493

> writing2LC=getModel(writingMix, which = "2")

> summary(writing2LC)
    Call:
    raschmix(data = d1, k = 2, scores = "meanvar", control = list(iter = 1000))

           prior size post>0 ratio
    Comp.1  0.54  682   1077 0.633
    Comp.2  0.46  395   1077 0.367

    Item Parameters:
           Comp.1      Comp.2
    i1 -2.2544134 -1.69223340
    i2 -1.4055979 -1.32317135
    i3  0.2100710 -0.66747131
    i4 -0.2086226 -0.01229296
    i5  0.9011347  0.64267087
    i6  0.9373187  1.23569648
    i7  1.8201096  1.81680168

    'log Lik.' -4514.177 (df=19)
    AIC: 9066.353   BIC: 9161.01

> writing2LC@nobs                                 # Sample size used: extreme scores removed
    [1] 1077

> writing1LC=getModel(writingMix,which="1")
> logLik(writing1LC)                              # lnL for 1 class
    'log Lik.' -4541.771 (df=10)

> logLik(writing2LC)                              # lnL for 2 classes
    'log Lik.' -4514.151 (df=19)

> writing3LC=getModel(writingMix,which="3")
> logLik(writing3LC)                              # lnL for 3 classes
    'log Lik.' -4507.897 (df=28)

> plot(writing2LC,pos="topleft")                  # produces Figure F.6

> # LC membership for non-zero variance response vectors; 2 class model; N’=1077
> grp = data.frame(clusters(writing2LC))

> histogram(writing2LC)                   # produces Figure F.7

> N = length(writing[,1])                 # number of cases incl 0-variance response vectors
> L = length(writing[1,])                 # number of items
> freq = as.numeric(table(writingX$X))    # determine the # of 0-variance response vectors, trimN
> trimN = freq[1]+freq[L+1]               # 1-based indexing: freq[1] is X=0, freq[L+1] is X=7

(continued)
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lowest information criterion (e.g., which=”BIC”). However, we believe it is prudent 
to examine all the results to determine our best model. psychomix allows the use of 
either a saturated score model or a mean-variance score model parameterization of the 
raw score probabilities distribution. To mirror our WINMIRA approach we specify the 
mean-variance score model (score=”meanvar”). psychomix provides a progress 
indicator during its execution. As it completes each stage for a model it displays an “*” 
(i.e., “1 : *,” “1 : * *,” “1 : * * *”); the “1:…” are for the one-class model, the 
“2:…” are for the two-class model, and so on. Displaying our output object, writing-
Mix, shows that we failed to achieve convergence with the three-class model because 
the permissible number of iterations was reached.

TABLE F.3.  (continued)

> CensoredWriting=as.data.frame(matrix(-99.9,nrow=(N-trimN),ncol=9))    # initialize
> g=1L
> trim zero-variance response vectors
> for (i in 1:N) { 
+     if((writingX$X[i]>0) & (writingX$X[i] < L)) { 
+         CensoredWriting[g,]=writingX[i,]; g=g+1
+     }  # if
+ }  # for i

> names(CensoredWriting) = c("id",paste0("I",1:7),"X")           # use meaningful names
> names(grp) = c("LC")

> Nprime=length(CensoredWriting$X)                   # check - should match writing2LC@nobs
> Nprime
    [1] 1077

> CensoredWriting=cbind(CensoredWriting,grp)         # merge latent class membership

> # merge assignment probabilities
> CensoredWriting=cbind(CensoredWriting, posterior(writing2LC))

> # LC: latent class membership; ‘1’ & ‘2’ are LC=1 & LC=2 assignment probabilities
> head(CensoredWriting,6)
      id I1 I2 I3 I4 I5 I6 I7 X LC         1         2
    1  1  1  1  0  1  1  0  0 4  1 0.7416410 0.2583590
    2  2  1  1  1  1  1  0  0 5  1 0.7330276 0.2669724
    3  5  1  1  1  1  1  1  0 6  1 0.7982802 0.2017198
    4  7  1  1  0  1  1  0  1 5  1 0.8681011 0.1318989
    5  8  1  1  0  1  1  1  0 5  1 0.8989814 0.1010186
    6  9  1  0  1  1  0  1  1 5  1 0.8147455 0.1852545

> tail(CensoredWriting,5)
           id I1 I2 I3 I4 I5 I6 I7 X LC          1         2
    1073 1170  1  1  0  0  0  0  0 2  2 0.06020964 0.9397904
    1074 1171  1  1  0  0  0  0  0 2  2 0.06020964 0.9397904
    1075 1172  1  0  0  1  0  0  0 2  2 0.06698696 0.9330130
    1076 1173  1  1  1  0  0  0  0 3  2 0.20688811 0.7931119
    1077 1174  0  1  1  0  0  0  0 2  2 0.01495640 0.9850436

> write.csv(CensoredWriting, file = "WritingProbXLC.csv")av
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In our second call we demonstrate a simpler model specification approach that takes 
advantage of the fact our model does not have concomitant/covariates. This specification 
requires that we only provide the data matrix (writingMix= raschmix(data=d1,…). 
To address our first attempt’s nonconvergence we increase the maximum number of 
iterations to 1000 (control=list(iter=1000)) in our second call. As can be seen, 
convergence for the three-class model was achieved in 215 iterations.

Our model-data fit information shows AIC is lowest for the two-class model, 
whereas BIC and ICL are lowest for the one-class model.7 Given AIC’s tendency to sug-
gest models with more rather than fewer classes we would, given BIC, select the one-
class model. Why do these model-fit results differ from those of WINMIRA? As men-
tioned above there are differences in the implementations (e.g., the number of model 
parameters vary), but there are also slightly different data being analyzed. raschmix 
removes all zero-variance response vectors so we have ′N =1077 respondents and not 
N = 1174.8 For completeness, we note that the 2G  for the two- versus one-class models 
is significant ( 2G = 55.188 , p = 0.0000, df = 9) thus supporting the use of the two- over 
the one-class model, whereas it is not significant for the three- versus two-class models 
( 2G = 12.560 , p = 0.1835, df = 9). For pedagogical reasons we proceed with the two-class 
solution.

We extract the two-class solution from the writingMix output object using the 
getModel function. With latent class proportions of π =1  0.63 and π =2  0.37 we see 
that latent class 1 is almost twice the size of latent class 2. Our item location estimates 
follow in the Item Parameters table. For example, item 1 is the easiest in each class 
(i.e., δ =11

ˆ  –2. 2544 and δ =12
ˆ  –1.6922), whereas item 7 is estimated to be the most dif-

ficult in each class, δ =71
ˆ 1.8201 and δ =72

ˆ 1.8168. Similar information is graphically 
obtained from the item profile (Figure F.6). Our estimated locations show correlations 
with WINMIRA’s of 0.9978 for LC 1 and 0.9994 for LC 2.

The clusters function provides us with the latent class assignments for each 
of our 1077 cases (see writing2LC@nobs) with the posterior function providing 
the corresponding posterior probabilities used for these assignments. (We store the 
latent class assignments in the grp object for further use.) Figure F.7 shows the pos-
terior probabilities for each latent class. Generally speaking, we would like to have our 
respondents either high or low in each class. In the two-class solution (top) this pattern 
is somewhat evident except at the upper end of LC 1 and the lower end of LC 2. For 
pedagogical purposes we present the three-class solution in the bottom panel. As can be 
seen, the U-shape pattern is absent for two of the classes.

To match our latent class assignments to the corresponding respondents requires 
that we remove the zero-variance response vectors from our original data frame, writ-
ingX. To this end, we adopt a general approach to coding by using variables rather than 
“hard-coding” values (e.g., for loop). We first determine the sample size and instrument 
length using the length function followed by calculating the number of zero-variance 
response vectors, trimN. Our third step is to initialize a data frame, CensoredWrit-
ing, which will contain our results. Subsequently, we copy our original case data from 
writingX to CensoredWriting when the case satisfies 0 < X < 7. We use the names 
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function to assign meaningful variable names. Our final step is to use the cbind func-
tion to merge the LC assignment object grp and the posterior probabilities (cbind(…, 
posterior(writing2LC))) to CensoredWriting. The results are shown using the 
head and tail functions as well as written to an external csv file.

NOTES

1.  Strictly speaking, a latent class model with G ≥ (L + 1)/2 latent classes gives the same 
estimates of item parameters as the Rasch model does under conditional maximum likelihood 
estimation. In addition to the relationship between LCA and the Rasch model, the Rasch model 
is related to a log-linear model (e.g., Baker & Subkoviak, 1981; Kelderman, 1984; also see Hol-
land, 1990a, 1990b). That is, the Rasch model may be expressed as a log-linear model for the 
probabilities of each unique response pattern (Cressie & Holland, 1983). In this case, it is pos-
sible to estimate the parameters via log-linear analysis (see Mellenbergh & Vijn, 1981, as well as 
Kelderman, 1984).

2.  Yamamoto (1989) developed a HYBRID model that eliminates the constraint that the 
same item response model hold in each latent class. Thus, one may have different IRT models in 
each class or have an IRT model in one class, but not in another class. Boughton and Yamamoto 
(2007) show how the HYBRID model may be applied to the analysis of speededness. The WIN-
MIRA software package can estimate the HYBRID model.

FIGURE F.6.  Estimated Item Parameter profile.

		  Mixture Models	 85



FIGURE F.7.  Posterior probabilities for two- (top) and three- (bottom) class solutions. Note. LC 
= 1: Comp. 1; LC = 2 : Comp. 2.
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3.  In the literature one finds synonymous terms, such as, Rasch mixed model or Rasch 
mixture model. We will precede the IRT model (e.g., “Rasch”) with either “mixture” or “mixed” 
to be consistent with the format used throughout this book in which the “type” comes first (e.g., 
“partial credit” Rasch model, “modified one-parameter” logistic model, “dichotomous” Rasch 
model, “two-parameter logistic” (2PL) model).

4.  To perform our mixture Rasch model analysis using Mplus we begin by specifying a 
single latent class model and proceed to two- and three-latent class models. This is the syntax 
for G = 2:

Title: mix IRT - 2 LCs
Data: file=”<filename.csv>”;
Variable:names=i1-i10;
categorical=i1-i7;
classes=c(2);
analysis:type=mixture;
algorithm=integration;
starts=200 50;
model: %overall%
f by i1-i7*(1);
[f@0];
%c#1%
f by i1-i7@1;
f;
[i1$1-i7$1];
%c#2%
f by i1-i7@1;
f;
[i1$1-i7$1];
plot: type=plot3;
output: tech1 tech8;

The general format is the specification of the variables and their nature (names=i1-i7 
and categorical=i1-i7), the two class model (classes=c(2)), the use of categorical and 
continuous latent variables (type=mixture), followed by the model specification. We start 
with an overall model specification of what is in common across our latent classes. That is, our 
latent variable (f) is being measured by each of our ten items (i.e., i1, …, i7). Each of these items 
has a starting value of 1 and we fix the latent variable’s mean to 0 in all classes ([f@0]); also 
addresses model identification. The class specific parts follow. Class 1 (i.e., %c#1%) is presented 
first and followed by the second class (i.e., %c#2%). We want to estimate a model with a constant 
discrimination (i.e., 1) within each class set with each item measuring the continuous factor 
(f by i1-i7@1) within a class, but allow item locations to vary. (Technically, allowing the item 
thresholds to vary, but these thresholds are transformed to the item locations. Similarly, setting 
the item loadings to be 1, but the loadings are also transformed to be our item discriminations.)

5.  As an example of obtaining AIC and BIC we use Equations 5.11 and 5.12. For the two-
class model we have Nparm = 17 and N = 1174

	 AIC = –2lnL + 2Nparm = –2(–4516.35) + 2(17) = 9066.70
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and

	 BIC = –2lnL + ln(N)Nparm = –2(–4516.35) + ln(1174)(17) = 9152.86.

6.  This interpretation comes from θ1
ˆ = –2.053 and δ71

ˆ  = 1.79190 and Equation F.7; α = 1.0:

	
θ δ

θ δ

− − −

− −−
= = =

++

1 71

1 71

ˆˆ( ) ( 2.053 1.79190)

71 ˆˆ ( 2.053 1.79190)( ) 11

e e
p

ee
 0.0209,

and again with δ11
ˆ  = –2.08406:

	
θ δ

θ δ

− − − −

− − −−
= = =

++

1 11

1 11

ˆˆ( ) ( 2.053 ( 2.08406))

11 ˆˆ ( 2.053 ( 2.08406))( ) 11

e e
p

ee
 0.5078.

7.  The integrated completed likelihood (Biernacki, Celeux, & Govaert, 2000; ICL) maxi-
mizes the integrated likelihood to select the “best” model; the ICL is also known as integrated 
classification likelihood. The ICL can be obtained by using BIC as an approximation to the inte-
grated likelihood of the complete data (a.k.a., ICLBIC). That is, the ICL modifies BIC’s penalty to 
reflect the quality of classification as measured by entropy (E):

	 ICLBIC = –2lnL + ln(N)Nparm –2E,

where E = 
ν

ν ν
= =
∑∑
N G

1 1

( | )ln( ( | ))i i
i

p px x . As is the case with the information indices, smaller ICLBIC  

values indicate better relative fit than do larger values.
Because E is negative it is sometimes presented as its opposite with “+2E” replacing “–2E” in 

ICLBIC; in certain contexts E is calculated using base 2. E does not have an upper bound. Thus, it  

is sometimes rescaled to be [0,1]: ′E  = 
ν

−− E
1

Nln( )
 ( ν  > 1) with values approaching 1 reflecting  

“good” values. One guideline for interpreting ′E  uses 0.8 to reflect the minimum for a “good” 
value. When E ≈  0 (or ′E  = 1) the classes are well separated and the classification of respondents 
is essentially perfect given the model. Mplus provides ′E  (entropy) in its output.

8.  As an example of obtaining AIC and BIC we use Equations 5.11 and 5.12. For the two-
class model we have Nparm = 19 and ′N  = 1077

	 AIC = –2lnL + 2Nparm = –2(–4514.177) + 2(19) = 9066.35

and

	 BIC = –2lnL + ln( ′N )Nparm = –2(–4514.177) + ln(1077)(19) = 9161.01.
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This appendix contains various sections that provide either background information, 
alternative/additional analyses, or models not covered in the chapters of this book. For 
instance, we discuss using principal axis estimation as well as provide background 
information on odds and odds ratios and FORTRAN formats. We think that this “nether 
land” appendix is important, but not necessarily required to understand the material in 
the chapters.

USING PRINCIPAL AXIS FOR ESTIMATING ITEM DISCRIMINATION

One may use the relationship between the two-parameter normal ogive model and fac-
tor analysis (see Appendix C “Extending the Two-Parameter Normal Ogive Model to a 
Multidimensional Space”) to obtain item parameter estimates (Lord & Novick, 1968; 
Mislevy, 1986b; Takane & de Leeuw, 1987). This alternative approach for estimating 
the discriminations involves performing a principal axis analysis of the tetrachoric cor-
relation matrix for the data.1 PRELIS (Jöreskog & Sörbom, 1999) is used to obtain the 
tetrachoric correlation matrix, TR , shown in Table G.1. (Alternative ways to obtain the 
tetrachoric correlation matrix are to use an SPSS macro by Enzmann [2002]; the R pack-
ages psych (Revelle, 2018), polycor (Fox, 2019), or sirt; or, because the tetrachoric 
correlation is a special case of the polychoric correlation, SAS’s PLCORR keyword with 
PROC FREQ.)

An exploratory principal axis analysis of TR  yields a one factor solution ( λ1 = 
2.1177, λ2  = 0.1626, λ3  = 0.0742, λ4  = 0.0369). If we specify the extraction of a single 
factor, we obtain a common factor that accounts for 42.4% of the common variance with 
the following factor loadings (ajs) for items 1 through 5: a1 = 0.5258, a2 = 0.76660, a3 = 
0.6884, a4 = 0.6748, and a5 = 0.5100. The difference between TR  and the reproduced TR  
yields residuals that are all less than |0.0005|.

Given that the factor loadings are the biserial correlations of the responses with θ  
(Lord, 1980), we can use the factor loadings with Equation C.12 (Appendix C “Extend-
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ing the Two-Parameter Normal Ogive Model to a Multidimensional Space”) to obtain 
estimates of α ; δ̂ sj  are obtained via Equation C.16. These αs  are on the normal met-
ric. Using Equation C.12 we obtain α1

ˆ  = 0.6181, α2
ˆ  = 1.1938, α3

ˆ = 0.9490, α4
ˆ  = 0.9145, 

and α5
ˆ  = 0.5928. (As a comparison the BILOG normal metric estimates are α1

ˆ  = 0.733, 
α2
ˆ = 1.199, α3

ˆ = 0.928, α4
ˆ = 0.922, and α5

ˆ  = 0.587; these estimates are obtained using 
the command file shown in Table 5.1, but with the subcommand LOG omitted from the 
GLOBAL line.) If we place our α̂s  on the logistic metric by multiplying them by D, we 
obtain α1

ˆ  = 1.0519, α2
ˆ = 2.0319, α3

ˆ = 1.6151, α4
ˆ = 1.5564, and α5

ˆ  = 1.0090. The correla-
tion between these α̂s  with those from the Chapter 5 example, “Application of the 2PL 
Model to the Mathematics Data, MMLE, BILOG-MG,” shows a strong linear relationship 
between this approach and those obtained by MMLE, r = 0.9784.

INFINITE ITEM DISCRIMINATION PARAMETER ESTIMATES

In some situations it is possible to experience difficulty in estimating an item’s discrimi-
nation parameter with either JMLE or MMLE. Specifically, for some items the estimate 
of α  may drift off to infinity. The situation where α  does not have a finite estimate, 
is an example of a Heywood case (i.e., an improper solution); for example, see Bock and 
Aitkin (1981), Christofferson (1975), and Swaminathan and Gifford (1985). To explain 
why this difficulty in estimating α  is related to factor analysis’s Heywood case, recall 
that the total variance (σ 2 ) of each variable can be decomposed into variability that 
is in common across variables (common variance) plus variance specific to the variable 
(specific variance) and error variance. Specific and error variances collectively constitute 
unique variance. The complement of an item’s unique variance is its communality, 2

jh ; 
that is, 2

jh = 1 – unique σ 2
j . A variable’s communality specifies the proportion of a vari-

able’s variance that is attributable to the common factors.
Although the bounds for 2

jh  are 0.0 and 1.0, the estimate of 2
jh , 2ˆ

jh , may not be 
within these bounds. Because 2

jh  is a measure of common variance, the estimate reflects 

TABLE G.1. Tetrachoric Correlation Matrix, RT, 
for the Mathematics Test Data

Item intercorrelations

1 2 3 4 5

1.000

0.453 1.000

0.368 0.502 1.000

0.313 0.519 0.476 1.000

0.240 0.373 0.368 0.369 1.000
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negative common variance whenever 2ˆ
jh  < 0.0. In addition, if 2ˆ

jh  > 1.0, then one has a 
Heywood case (Heywood, 1931). In terms of variance, a Heywood case reflects negative 
unique variance, because for the equality in “1 = 2

jh  + unique σ 2
j ” to hold, the item’s 

unique σ 2
j  must be negative.

We can estimate a communality using the triad approach (Harman, 1960)

	 2ˆ
jh  = 

jk jl

kl

r r

r
, 	 (G.1)

where k and l are the two variables with the highest correlation with the variable of 
interest. For example, if we apply this approach to the values in Table G.1, we obtain an 

2
2ĥ  = 0.5473 for the second item. However, if we change 34r  to be 0.25 (Table G.1), then 
2
2ĥ  = 1.0422 (i.e., a Heywood case) and its corresponding unique σ 2

j  is negative (= 1 – 
1.0422 = –0.0422).

Because 2
jh  equals the sum of squared loadings across the F factors, that is

	 2ˆ
jh  = ∑ 2

jf
f

a 	 (G.2)

and, with a unidimensional situation, 
2
jh = ja  = θjr , we can use the communality for 

item j to estimate α j  via Equation C.12. Applying Equation C.12 to item 2 produces 
a nonfinite α2

ˆ . The relationship between ja  (or 2h ) and α j  is best represented by a 
J-curve such that as ja  (or 2h ) approaches 1.0 α j  goes to ∞ . Consequently, if ˆ ja  (or 

2ĥ ) ≥ 1, then α j  does not have a finite value.
This difficulty in estimating α j  does not occur in all data sets. In addition, by using 

a prior distribution for the estimation of α j  one may avoid the problem of obtaining a 
nonfinite α̂ j. An alternative strategy is to impose an upper limit on the values that the ˆ
α̂ j may take on (i.e., a kludge). This is the approach used in LOGIST. Unless otherwise 
specified by the user, BILOG imposes a prior distribution when estimating α j  with the 
2PL and 3PL models; BILOG also imposes a prior for estimating the IRF’s lower asymp-
tote, χ j , for the 3PL model. The use of a prior in estimating α j  can be seen in the Phase 
2 output in the CALIBRATION PARAMETERS section, the line PRIOR DISTRIBU-
TION ON SLOPES: YES. Although, in general, the use of a prior distribution (i.e., a 
Bayesian approach) produces estimates that may be regressed toward the prior’s mean, 
the use of a prior with discrimination parameter estimation “has less serious implica-
tions than in the case of” (Lord, 1986, p. 161) person and item location parameters.

EXAMPLE: NOHARM UNIDIMENSIONAL CALIBRATION

In Chapter 3 we mention that NOHARM can provide not only dimensionality informa-
tion, but also calibration results. In this section we discuss the two-parameter calibra-
tion results that were omitted from Tables 3.1 and 3.10; NOHARM may also be used for 
obtaining results for the one-parameter and the three-parameter models. The input file 
shown in Table 3.9 produced the output shown below in Table G.2.
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TABLE G.2.  One-Dimensional Output Including Item Parameter Estimates

NOHARM4 results

                                  N O H A R M
                   Fitting a (multidimensional) Normal Ogive
                     by Harmonic Analysis - Robust Method

     Input File : math1Dcasedata.cmd
     Title : EXPLORATORY ANALYSIS, math.dat (raw data), 1D

     Number of items        =  5
     Number of dimensions   =  1
     Number of subjects     =  19601

     An exploratory solution has been requested.

Sample Product-Moment Matrix

           1       2       3       4       5
  1     0.887
  2     0.607   0.644
  3     0.531   0.442   0.566
  4     0.401   0.352   0.317   0.427
  5     0.360   0.302   0.275   0.223   0.387

:

Final Constants
      1       2       3       4       5
   1.438   0.551   0.229  -0.256  -0.335

Final Coefficients of Theta
           1
  1     0.637
  2     1.106
  3     0.947
  4     0.966
  5     0.610
:
Threshold Values
      1       2       3       4       5
   1.213   0.369   0.166  -0.184  -0.286

Unique Variances
      1       2       3       4       5
   0.711   0.450   0.527   0.517   0.729

Factor Loadings
           1
  1     0.537
  2     0.742
  3     0.688
  4     0.695
  5     0.521

(continued)
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TABLE G.2.  (continued)

           LORD`S PARAMETERIZATION - for the unidimensional case
           =====================================================

Vector A : Discrimination parameters
      1       2       3       4       5
   0.637   1.106   0.947   0.966   0.610

Vector B : Difficulty parameters
      1       2       3       4       5
  -2.258  -0.498  -0.242   0.265   0.550

noharm.sirt results

> noharm1d=noharm.sirt(mathdata,dimensions=1,lower=0,optimizer="optim", 
    reliability=T)
> summary(noharm1d)

-----------------------------------------------------------------
sirt 3.4-64 (2019-05-03 18:33:11) 
R version 3.6.0 (2019-04-26) i386, mingw32 | nodename=RRRR-PC | login=rj 

Call:
noharm.sirt(dat = mathdata, dimensions = 1, lower = 0, optimizer = "optim", 
    reliability = T)
Date of Analysis: 9999-99-99 17:38:39 
Time difference of 0.0500021 secs
Computation Time: 0.0500021 

Function 'noharm.sirt'

:
RMSEA                          : 0.028 

Green-Yang Reliability Omega Total : 0.633
:

Item Parameters - Latent Trait Model (THETA) Parametrization 
 Loadings, Constants, Asymptotes and Descriptives

       F1 final.constant lower upper item.variance     N     p
i01 0.637          1.438     0     1         1.406 19601 0.887
i02 1.106          0.551     0     1         2.223 19601 0.644
i03 0.947          0.229     0     1         1.897 19601 0.566
i04 0.966         -0.256     0     1         1.933 19601 0.427
i05 0.610         -0.335     0     1         1.372 19601 0.387

Item Parameters - Common Factor (DELTA) Parametrization 
 Loadings, Thresholds, Uniquenesses and Asymptotes

       F1 threshold lower upper uniqueness
i01 0.537    -1.213     0     1      0.711
i02 0.742    -0.369     0     1      0.450
i03 0.688    -0.166     0     1      0.527
i04 0.695     0.184     0     1      0.517
i05 0.521     0.286     0     1      0.729

(continued)
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Chapter 10’s “Estimation of the M2PL Model” section contains a brief overview 
of NOHARM’s estimation approach. In the current context, the unidimensional two-
parameter model may be seen as a special case of the M2PL. The reader interested in 
greater estimation detail is referred to McDonald (1967, 1997) and McDonald and Mok 
(1995). Our NOHARM results are on the normal metric. As such, if we wish to have the 
α̂ sj  on the logistic metric we would need to multiply the α̂ sj  by D = 1.702.

We first discuss NOHARM4 and then noharm.sirt. In NOHARM4 our estimates 
are found at the end of the output in the section labeled LORD’S PARAMETERIZA-
TION - for the unidimensional case. The subsection Vector A : Dis-
crimination parameters contains the item discrimination estimates. Our item 
discrimination estimates are α1

ˆ  = 0.637, α2
ˆ  = 1.106, α3

ˆ  = 0.947, α4
ˆ  = 0.966, and α5

ˆ  
= 0.610. The item locations estimates are found in the subsection labeled Vector B: 
Difficulty parameters. As can be seen, the item location estimates are δ1

ˆ  = 
–2.258, δ2

ˆ  = –0.498, δ3
ˆ  = –0.242, δ4

ˆ  = 0.265, and δ5
ˆ  = 0.550. The values in these two 

subsections are determined from values presented above in the output. For instance, 
the values labeled as Final Coefficients of Theta are the item discrimination 
estimates (e.g., α1

ˆ = 0.637, α2
ˆ = 1.106, etc.). Dividing these values into the negative of the 

corresponding values labeled Final Constants produces the item location estimates 
(i.e., δ γ α= −ˆ ˆ ˆ

j j j ). Thus, for item 1 we have δ1
ˆ  = –(1.438/0.637) = –2.258, for item 2 

we have δ2
ˆ = –(0.551/1.106) = –0.498, and so on. The Pearson correlation coefficients 

between the NOHARM estimates and those from BILOG (Chapter 5) are 0.9574 for the 
α̂ sj  and 0.9995 for the δ̂ sj .

The values from the Threshold Values section are estimates that correspond to 
the 

jtz  shown in Figure C.5. As a result, these threshold values are related to the items’ 
sjP  and may be obtained in the way described above in Appendix C “The Relationship 

between IRT Statistics and Traditional Item Analysis Indices” (i.e., using the inverse of 
the cumulative unit normal distribution for a jP ). NOHARM obtains these values by 
taking the Final Constants values and multiplying them by the square root of the 
values in the Unique Variances section. For example, the threshold value for item 
1 would be obtained as 1.438( 0.711)  = 1.2125.

As discussed above in the “Using Principal Axis for Estimating Item Discrimina-
tion” section, item discriminations may be estimated by using factor loadings. Using the 
values provided in the Factor Loadings section and dividing them by the square 

TABLE G.2.  (continued)

--- Parameter table ---
  mat row col index fixed   est lower
1   F   1   1     1     0 0.637  -Inf
2   F   2   1     2     0 1.106  -Inf
3   F   3   1     3     0 0.947  -Inf
4   F   4   1     4     0 0.966  -Inf
5   F   5   1     5     0 0.610  -Inf
6   P   1   1    NA     1 1.000    NA
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root of the unique variances provides the item discrimination estimates. For instance, 
for item 1 the corresponding factor loading is 0.537 and the unique variance is 0.711. 
Therefore, 0.537 divided by the square root of 0.711 equals 0.637.

Unlike NOHARM4, noharm.sirt provides a reliability estimate. As discussed 
above, nonlinearity is likely to be present when working with dichotomous data. The 
noharm.sirt reliability estimate (Green & Yang, 2009) allows for nonlinear relation-
ships between items and the latent variable. As can be seen, for our data with only five 
items our reliability estimate is 0.633. As a comparison, Cronbach’s alpha is 0.6077. 
However, see Sitjsma (2009) for comments about issues with Cronbach’s alpha.

To obtain our item location estimates we can use the relationships discussed 
above. Examining the Item Parameters - Latent Trait Model (THETA) 
Parametrization [sic] table we find our items’ sjP  (p; e.g., 1P  = 0.887) and the item 
discrimination estimates (F1), α1

ˆ = 0.637, α2
ˆ = 1.106, α3

ˆ = 0.947, α4
ˆ = 0.966, and α5

ˆ  = 
0.610. To obtain our item location estimates we divide these values into the correspond-
ing final.constant values. For example, δ1

ˆ = –(1.438/0.637) = –2.257, and so forth. From 
the Item Parameters - Common Factor (DELTA) Parametrization [sic] 
table we find our factor loadings (F1), threshold values, and unique variances that could 
also be used to obtain the item discriminations. Chapter 3 discusses how to interpret 
NOHARM’s fit information to assess model–data fit.

AN APPROXIMATE CHI-SQUARE STATISTIC FOR NOHARM

In addition to using NOHARM’s RMS and GFI to determine data dimensionality, one 
could also use Maydeu-Olivares and Joe’s (2006) 2M  statistic or Gessaroli and De 
Champlain’s (1996) approximate chi-square statistic, χ2

GD . The former statistic is dis-
tributed as a χ2 , although at present its calculation is not easily performed. The latter 
statistic tests the null hypothesis that the off-diagonal elements of the residual matrix 
are zero (i.e., the number of dimensions is correctly specified in the model). Although 
Maydeu-Olivares (2001) has indicated that Gessaroli and De Champlain’s statistic is not 
distributed as a χ2 , it may still be useful to provide some rough evidence to support 
a unidimensional or a multidimensional model of the data. For example, research has 
found χ2

GD  to be useful to correctly identify dimensionality with sample sizes of 250, 
500, and 1000 (e.g., De Champlain & Gessaroli, 1998; Gessaroli & De Champlain, 1996; 
also see Finch & Habing, 2005).

Because χ2
GD  is based on evaluating the off-diagonal elements of the symmetric 

residual matrix, there are (L2 – L)/2 unique off-diagonal item pairs. To calculate χ2
GD  we 

use the items’ observed proportion of responses of 1 ( OP ) and the residual matrix’s val-
ues to obtain an estimated residual correlation for each unique item pair. This estimated 
“residual correlation” between items j and v is

	 =
   − −   

*

(1 ) (1 )

R
jv

jv
O O O O
j j v v

P
r

P P P P
, 	 (G.3)
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where, O
jP  is item j’s observed proportion of responses of 1, O

vP  is the observed 
proportion of responses of 1 for item v, and R

jvP  is the residual proportion of indi-
viduals who responded 1 to both items j and v (i.e., R

jvP  is the difference between 
the observed proportion of individuals who responded 1 to both items and what 
would be expected on the basis of the model). The sR

jvP  come from the NOHARM 
program’s residual matrix and the sOP  may be obtained from the main diagonal of 
P ; see Equation 3.4.

Prior to summing the estimated residual correlations across all unique item pairs, 
each residual correlation is transformed using the Fisher r-to- z  transformation

	 jvz  = 
 +
 

−  

*

*

1
0.5ln

1

jv

jv

r

r
	 (G.4)

to stabilize their variances. The weighted sum of the squared Fisher sjvz  gives an 
approximate chi-square for the solution

	 χ2
GD  = ( )

1L 2

2 1

(N 3)
j

jv
j v

z
−

= =
− ∑∑ ,	 (G.5)

where N is the sample size and L is the instrument length. The null hypothesis is that 
after fitting the model the resulting residual correlation matrix contains off-diagonal 
elements equal to zero. χ2

GD  would be calculated for each dimensional solution and 
its significance evaluated with df = −2(L L) 2  – Nparm, where Nparm is the number 
of estimated independent parameters in the solution’s nonlinear factor analytic model. 
Failure to reject null hypothesis provides evidence that the corresponding dimensional 
solution represents a reasonable structure for the data vis á vis the observed correla-
tions. Determining Nparm’s value depends on the number of dimensions, the number of 
items, and the number of constraints. In the exploratory case the simplest way to obtain 
Nparm is to count the number of unique estimates in NOHARM’s Final Coeffi-
cients of Theta table.

As mentioned above, the gist of the null hypothesis is that one has correctly speci-
fied the number of dimensions (e.g., unidimensionality) in the calibration model. As a 
result, one would like to obtain a nonsignificant χ2

GD  in order to have supporting evi-
dence. De Champlain and Tang (1997) have suggested using the number and proportion 
of | * sjvz | > 2 to provide additional evidence supporting the result of the hypothesis test, 
as well as for diagnosing why a particular solution does not correspond to the specified 
dimensional model.

The use of the (N – 3) weighting factor in Equation G.5 shows this statistic’s per-
formance is influenced by sample size. The degree of influence is greater for extremely 
large or extremely small samples than for sample sizes of, say, 500 to 1000. For our 
example’s large sample size we would expect its influence to lead us to falsely reject the 
correct dimensional solution. In addition to sirt.noharm, software for calculating 
χ2

GD  and its probability is available from De Champlain and Tang (1997). Alternatively, 
a spreadsheet program could be used to calculate the χ2

GD  and its significance evaluated 
using critical values or a function like EXCEL’s CHIDIST.
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RELATIVE EFFICIENCY, MONOTONICITY, AND INFORMATION

If we apply a monotonic transformation to θ  to create a new metric θ*  then the trans-
formed information function ( θ*( , )I y ) equals the untransformed information function 
( θ( , )I y ) divided by the square of the derivative of the transformation (Lord, 1974b)2

	 θ*( , )I y  = 
θ

θ
θ

 ∂
 ∂ 

2*

( , )I y
.	 (G.6) 

 

Equation G.6 implies that the location of the maximum information may be changed 
by a transformation of the metric. Moreover, the shape of the information function may 
be changed as θ

θ
∂

∂
*  varies across the continuum (Lord, 1980).

In contrast, the RE is invariant under a monotonic transformation. For example,  
assume that a monotonic transformation is applied to the 1PL and 2PL model calibra-
tion results from Chapter 5. This monotonic transformation is based on the exponential 
function and is ξ*  = ξcKe  with α*

j  = α*
j c  where ξ  is either θ  or δ j , K and c are two 

constants that, for convenience, are set to 1, and the asterisks indicate the parameter 
estimates are on the transformed metric (cf. Lord, 1980). For convenience, the item 
parameter estimates from Chapter 5 are presented in Table G.3.

The information functions on the transformed metric are given by the 1PL and 2PL 
models’ information functions from the untransformed metric (e.g., Figure 5.8) divided 
by θ 2( )e  (i.e., for this transformation the denominator of Equation G.6 is θ 2( )e ). These 
transformed 1PL and 2PL models’ information functions θ*( ,2PL)I  and θ*( ,1PL)I , 
respectively, are shown in Figure G.1. Our latent variable metric shifts from –4 ≤ θ  
≤ 4 to 0.05 ≤ θ*  ≤ 55. It is clear these information functions are neither unimodal nor 
symmetric and do not have the same maxima as those in Figure 5.8. Moreover, both 
models provide their maximum information at the lower end of the transformed metric. 
However, the RE plot of these information functions (Figure G.2) shows the same pat-
tern as seen in Figure 5.9. Therefore, relative efficiency is unaffected by a monotonic 
transformation of the metric (Lord, 1980).

TABLE G.3.  1PL and 2PL Models’ Item Parameter Estimates 
for the Mathematics Data

Item

1PL model (α̂  = 1.421) 2PL model 

ˆ
j

δ ˆ
j

α ˆ
j

δ

1 –1.925 1.226 –2.107

2 –0.581 1.992 –0.499

3 –0.264 1.551 –0.254

4 0.284 1.544 0.270

5 0.443 0.983 0.560
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FIGURE G.1.  Total information function for 1PL and 2PL model monotonically transformed 
metrics. 1PL information function ( θ*( ,1PL)I  = 1PL) shifted to the right by 1 unit to avoid super-
imposition with 2PL information function ( θ*( ,2PL)I  = 2PL).

FIGURE G.2.  Relative efficiency plot for monotonically transformed metric based on 1PL* and 
2PL* models.
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FORTRAN FORMATS

A FORTRAN format statement specifies how a FORTRAN program (e.g., PARSCALE, 
BILOG, EQUATE) should read and interpret the contents of a data file. This format 
begins and ends with a parenthesis. Everything within the parentheses consists of for-
mat descriptors. Some common general descriptors are presented in Table G.4; there are 
many more.

As an example, assume that our format statement is (10A1, T1, 5(1X,1A1)). To inter-
pret this statement the parenthesized term is decomposed into the components sepa-
rated by the commas. Therefore, beginning in column 1 our interpretation is

Format descriptor Interpretation

“10A1” means read 10 alphanumeric variables that are each 1 column 
wide

“T1” means go to column 1

“5(1X,1A1)” means repeat the parenthesized terms 5 times

The parenthesized term is further broken down into two segments:

“1X” means skip 1 column 

“1A1” means read 1 alphanumeric variable that is 1 column wide 

Repeat the above two segments 5 times

That is, “5(1X,1A1)” is a shorthand way of specifying “1X,1A1,1X,1A1,1X,1A1,1X, 
1A1,1X,1A1.”

TABLE G.4.  Some General FORTRAN Format Descriptors

Code Meaning Syntax Example Example’s interpretation

A specifies alphanumeric 
data

nAc 5A1 Read 5 columns as alphanumeric and each 
alphanumeric occupies one column

X skip nX 3X Skip 3 columns

F specifies floating point 
data

nFc.d 2F4.2 Read 2 real numbers that each occupy at 
most 4 columns and contain 2 decimal 
places

I specifies integer data nIc 1I6 Read 1 integer that occupies at most 6 
columns

T tab Tc T23 Go to column 23

/ skip to a new line for 
the current record

Note: n = repeat factor, c = total number of columns, d = number of decimal places.
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Let us apply this (10A1,T1,5(1X,1A1)) to a line of data where the data begin with a 
space and successive values are separated by a space

	 0 0 0 1 1

(i.e., using /b  to indicate a blank space our data are “ /b 0 /b 0 /b 0 /b 1 /b 1,”). Because the 
format (10A1,T1,5(1X,1A1)) first specifies the reading of 10 characters, each occupying 
one column (i.e., 10A1), the entire string “ 0 0 0 1 1” is read with the values interpreted 
as alphanumeric (e.g., characters). The next format descriptor, T1, instructs the program 
to return to column 1 (i.e., the first blank space). The final component, 5(1X,1A1), speci-
fies the rereading of the same 10 characters (i.e., “ 0 0 0 1 1”). That is, skip a column 
and then read a column and repeat this five times. Again, the values are interpreted as 
alphanumeric (e.g., characters).

Some calibration programs (e.g., BILOG) allow the user to specify a case identifica-
tion field. Specifically, the first format descriptor is associated with this identification 
field (e.g., 10A1 refers to the case identification field). For instance, with the format 
(10A1,T1,5(1X,1A1)) we are using an individual’s response pattern as their identification 
field and then specifying where to find the responses to be analyzed (i.e., T1, 5(1X,1A1)).

Sometimes each case has identification information, such as the person’s Social 
Security number (SSN). For example, assume that each line of data consists of a person’s 
SSN (with hyphens) followed by a space and then their response vector (e.g., 123-45-6789 
00011). For this layout the, say, BILOG format statement would be (11A1,1X,5A1). The 
11A1 would read the SSN (including hyphens), 1X would skip the blank space following 
the SSN, and the 5A1 would read five consecutive columns of responses. Although the 
example’s responses consist of the integers 0 and 1, by treating these data as alphanu-
meric (i.e., using the A in the format) the program allows flexibility in the data coding. 
For instance, our format statement could be used with a response vector that contains 
letters, such as “T” and “F” (e.g., 123-45-6789 FFFTT).

ODDS, ODDS RATIOS, AND LOGITS

Probabilities may be expressed in terms of the odds of an event occurring. Some treat-
ments of IRT use the odds of an event in their discussions and we use them in Chapters 
9 and 12. The odds of an event b occurring (i.e., a “success”) is given by

	 ( )odds b  = 
−

( )

1 ( )

p b

p b
 	 (G.7)

Equation G.7 states that the odds of b occurring is equal to the ratio of the probability of 
the event b occurring to the probability that the event b does not occur. In other words, 
the odds of an event expresses the likelihood of the event occurring relative to its not 
occurring. If the event b is as likely to occur as to not occur, then the ( )odds b = 1 (i.e., 

( )p b  = −1 ( )p b  = 0.5). Obviously, if the event b is less likely to occur than to not occur, 
then the ( )odds b  are less than 1. Conversely, if the event b is more likely to occur than 
to not occur, then the ( )odds b  are greater than 1.
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By rearranging Equation G.7 one may obtain the probability of event b occurring 
expressed in terms of the odds of b by

	 ( )p b = 
+

( )

1 ( )

odds b

odds b
.	 (G.8)

Equation G.8 also shows that when an event b is as likely to occur as not (i.e., the 
( )odds b  = 1), then ( )p b = 0.50.
As an example of calculating odds, assume that the probability of b occurring (i.e., 

a “success”) is 0.75. The corresponding odds of b occurring are 3 (i.e., 0.75/0.25) or, 
alternatively, the odds are 3 to 1 that b occurs as opposed to not occurring; odds are 
implicitly compared to 1. Conversely, the odds of b not occurring ( b ) would be

	 ( )odds b  = 
−1 ( )

( )

p b

p b
.	 (G.9)

In terms of our example, the odds of b not occurring is 0.25/0.75 or 1 to 3 (i.e., 0.333 to 
1).

As a second example, let ( )p b be given by

	 ( )p b  = θ α δ=( 1 | , , )j jp x  = 
α θ δ

α θ δ

−

−+

( )

( )
1

j

j

e

e
.	 (G.10)

That is, the probability of b occurring refers to a response of 1 (i.e., a “success”) on item 
j. Therefore, we can talk about the odds of a response of 1 occurring versus a response of 
0 on an on item j. For instance, if θ = –2.0 and the item is located at –1.3 (i.e., δ j  = –1.3; 
α  = 1), then according to Equation G.10 the probability of a response of 1 (i.e., success) 
is 0.3318. Expressing this probability in terms of odds we have that the odds of success 
on the item are roughly 1 to 2. That is, the odds are

	 ( )odds b  = −
( )

1 ( )

p b

p b
 = 

0.3318

0.6682
 = 0.4966

In words, we have that the odds of a correct response are 0.4966 to 1 or multiplying each 
of these values by 2 gives us odds of 1 to 2. If this is a proficiency item, then these odds 
indicate that for people located at –2 we expect a correct response to this item for every 
two incorrect responses. Conversely, the odds of an incorrect response is approximately 
2 to 1. That is,

	 ( )odds b  = 
−1 ( )

( )

p b

p b
 = 

0.6682

0.3318
 = 2.0138

Given that probabilities are always positive and sum to 1 for all the events in an 
event class, the odds of an event must be positive. Moreover, although probabilities 
fall within the range 0 to 1, their conversion to odds results in the range of odds being 
0 to ∞  with a value of 1 reflecting no difference between the event occurring and not 
occurring. Because of this asymmetry in the odds scale (i.e., the “no difference point” 
occurs at 1) the odds of an event are sometimes transformed to the (natural) logarithmic 
scale (i.e., ln( ( ))odds b ). On the log scale a value of 0 reflects no difference between the 
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event occurring and not occurring, a positive values indicate that the odds of success 
are greater than of failure, and negative values reflect that the odds of failure are greater 
than the odds of success. This logit transformation gives the log odds or the logit of the 
event occurring. Therefore, applying this transformation to Equation G.7 one has

	 ln( ( ))odds b  = logit( ( ))p b  = 
 
 − 

( )
ln

1 ( )

p b

p b
.	 (G.11)

The transformation “ logit( ( ))p b ” is sometimes called the logit link function. By substi-
tuting Equation G.10 for ( )p b  in Equation G.11 one obtains, upon simplification, that 
the odds for a response of 1 (i.e., event b) occurring are3

	 ( )odds b  = 
−

( )

1 ( )

p b

p b
 = 

α θ δ

α θ δ

α θ δ

−

−

−

+

+

( )

( )

( )

1
1

1

e

e

e

 = 

α θ δ α θ δ

α θ δ

− −

−

   +   
   +   

( ) ( )

( )

1

11

j j

j

e e

e
 = 

α θ δ−( )je .	 (G.12)

As a result, the log odds are (after applying the quotient rule and substitution of Equa-
tion G.10)

logit( ( ))p b = 
 
 − 

( )
ln

1 ( )

p b

p b
= − −ln( ( )) ln(1 ( ))p b p b

(G.13)

= 
α θ δ α θ δ

α θ δ α θ δ

− −

− −

   
− −   + +   

( ) ( )

( ) ( )
ln ln 1

1 1

e e

e e

= 
α θ δ

α θ δ α θ δ

−

− −

   −   + +  

( )

( ) ( )

1
ln ln

1 1

e

e e

= ( ) ( )α θ δ α θ δ α θ δ− − −     − + − − +     
( ) ( ) ( )ln ln 1 ln[1] ln 1e e e

= α θ δ α θ δ α θ δ− − −     − + + +     
( ) ( ) ( )ln ln 1 ln 1e e e

= α θ δ− 
  

( )
ln je

= α θ δ αθ γ− = +( )j j, 

where γ αδ= −j j .
Equation G.13’s term “ γ αθ+j ” shows that the logit transformation has the effect 

of linearizing the nonlinear relationship between the continuous θ  and the probabil-
ity of the event of a response of 1 (i.e., ( )p b  = θ α δ=( 1 | , , )j jp x ). As such, α  reflects 
the slope of the logit regression line and may be interpreted as the change in the logit 
corresponding to a one-unit change in θ . The constant or intercept, γ j , is simply the 
predicted logit value when θ  = 0. Alternatively, γ αθ+j  may be interpreted as the term 
“αθ ” specifying how much better in prediction one can do over the baseline odds pro-
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vided by the intercept, γ j . Stated another way, and for simplicity letting α = 1, the logit 
γ αθ+j  indicates how much knowing only the person’s location improves our capacity 
to predict a response of 1 over and above just knowing the item’s location (i.e., δ γ= −j j ).

In terms of IRT, “α θ δ−( )j ” (or γ αθ+j ) specifies the logit success and equals the 
weighted difference between the person and item locations; a logit is also known as a 
logistic deviate. Therefore, a person’s θ  in logits is their natural log odds for obtaining 
a response of 1 on items of the kind chosen to define the zero point on the scale, and an 
item’s δ  in logits is its natural log odds for a response of 0 on that item from persons 
with zero ability (Wright & Stone, 1979).

Just as we can obtain the probability of b from the odds of b, we can rearrange Equa-
tion G.13 to obtain the probability of b from the log odds of b (i.e., logits)

	
 
 − 

( )
ln

1 ( )

p b

p b
= α θ δ−( )j .

Applying the natural exponential function to both sides, one has

	 ( )odds b  = 
 
 − 

( )

1 ( )

p b

p b
 = 

α θ δ−( )je  = 
αθ γ+ je  = 

γ αθje e .

Solving for ( )p b , one obtains

	 ( )p b  = 
αθ γ

αθ γ

+

++1

j

j

e

e
 = 

α θ δ

α θ δ

−

−+

( )

( )
1

j

j

e

e
.	 (G.14)

Because 
α θ δ−( )je  equals the ( )odds b  (see Equation G.12), Equation G.14 is the conver-

sion of the odds of a response of 1 to their corresponding probability (i.e., Equation G.8).
The “ γ αθ+j ” term is the simple linear regression (SLR) model for predicting the 

criterion Y’s conditional means (i.e., the means of Y’s distribution for fixed values of θ ). 
In other words, the SLR prediction equation is

	 θε( | )Y  = β β θ+0 1 ,	 (G.15)

where β γ=0 j  and β α=1 ; also see Chapter 13. Analogously, because the mean of a 
binary variable is the proportion of 1s, the proportions shown in Figure 2.2 may be 
considered a series of conditional means (i.e., θε( | )x  = ( )p z ) and Equation G.12 may 
be written as

	 θε( | )x  = θ( )p  = 
γ αδ

γ αδ

+

++1

e

e
,	 (G.16)

where x is our binary criterion (response) variable and θ  is our predictor. In short, 
Equation G.16 may be recognized as the typical representation of a logistic regression 
model.

We now discuss odds ratios. A natural extension of asking about the odds of a 
single event is to ask about how the odds of one event relate to the odds of another event. 
In this regard, the above ideas may be extended to describe the association between 

		  Miscellanea	 103



the odds of two events. This measure of association is the odds ratio (OR or Ω ). The 
odds ratio is, as the name implies, the ratio of two odds (e.g., ( )odds b  and ( )odds a ). For 
instance, the odds ratio of b to a is

	 Ω :b a  = 
−

=

−

( )
1 ( )( )

( )( )
1 ( )

p b
p bodds b

p aodds a
p a

 	 (G.17)

An odds ratio is asymmetrical about 1 with a range of 0 to ∞ . An Ω  = 1 indicates that 
both events are equally likely, with a value less than 1 indicating that the odds of success 
for a are greater than the odds for b, and a value greater than 1 reflecting that the odds 
of success for b are greater than the odds for a. For instance, if Ω  = 5, then the odds of 
success for b is five times the odds of success for a. As is the case with odds, the odds 
ratio is sometimes transformed to a logarithmic scale (ln( Ω )) to eliminate its inherent 
asymmetry. The transformed odds ratio is centered at 0 (i.e., a 0 reflects no difference 
between the events occurring) with values greater than 0 reflecting that the log odds of 
success for b are greater than the log odds for a, and values less than 0 reflecting that the 
log odds of success for a are greater than the log odds for b.

THE PERSON RESPONSE FUNCTION

The person response function (PRF) provides a graphical approach to examining person 
-model fit; the PRF is also known as the person characteristic curve (Weiss, 1973). The 
idea of a PRF may be traced back to the works of Thorndike and Thurstone in the early 
part of the 20th century (Engelhard, 1990). The PRF presents the relationship of the 
probability of a person’s response pattern and the item locations. In this regard, the PRF 
is the person analog to the item response function. Similar to person fit statistics, the 
PRF can be used to identify misfitting individuals. Additionally, the PRF may be used to 
identify a particular item or set of items for which person–item fit is problematic as well 
as to provide diagnostic information, such as inattention, guessing, identifying copying, 
and so on (Trabin & Weiss, 1983; Wright, 1977b). The performance of PRF has been 
compared with that of the zl  index (Nering & Meijer, 1998). They found that although 

zl  performed well, and in some cases better than PRF, the PRF was useful in determin-
ing the reason for a misfitting response vector.

In general, the PRF is assumed to be a nonincreasing function of the item δs . 
Departures from this monotonicity assumption are taken as indicators of person–model 
misfit for all or some subset of the instrument’s items. However, this assumption may 
be unreasonable if the items are multidimensional or the items cannot be ordered in the 
same way for all individuals (Sijtsma & Meijer, 2001).

To examine person fit, we compare a person’s observed PRF (OPRF) with their 
expected PRF (EPRF). Trabin and Weiss (1983) argue that the shape of the OPRF pro-
vides diagnostic information concerning guessing behavior, carelessness, the precision 
with which the person is measured, and dimensionality information. Figure G.3 contains 
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an example of each of these diagnoses and is adapted from Trabin and Weiss (1983). In 
the following, assume a proficiency assessment situation and the EPRF is appropriate for 
the three OPRFs. We would interpret the close agreement between the EPRF and OPRF 
curves as indicating good fit. Furthermore, the steepness of the OPRF reflects that this 
person is more precisely measured than they would have been if the OPRF had been less 
steep. Also shown are two additional problematic OPRFs labeled “OPRF B” and “OPRF 
C.” Because the right side of person’s OPRF C is greater than their EPRF, this person is 
correctly responding to items that they are expected to incorrectly answer. Trabin and 
Weiss interpret this to indicate guessing behavior on the items located at the upper end 
of the continuum. Moreover, because the observed proportion of correct responses for 
easy items (i.e., the left side of OPRF C) is less than would be expected according to the 
person’s EPRF, one has evidence of carelessness. OPRF B reflects a person exhibiting 
inconsistent response behavior because they are incorrectly answering easy items and 
correctly answering difficult items. Because this person’s OPRF reflects a deviation from 
a unidimensional response pattern, Trabin and Weiss (1983) suggest it reflects multidi-
mensionality in the person.

One approach to obtaining the OPRF is to put the instrument’s item into strata (s = 
1, . . . , S); it is preferable that all strata have the same number of items. Because each stra-
tum consists of Ls  items that are similar to one another in terms of location, the strata 
can be ordered on the basis of their average locations.4 Assuming dichotomous data and 
the strata approach, we can obtain an individual’s OPRF by calculating, for each stratum, 
the proportion of items for which the person had a response of 1. Subsequently, these 
proportions are plotted as a function of stratum location level. To obtain the individual’s 
EPRF one uses their θ̂  and the item parameter estimates to calculate the person’s jp  for 
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each item in each stratum. The average of these probabilities for the Ls  items that define 
each stratum specifies the individual’s expected proportion of 1s for the stratum. These 
averaged probabilities are then plotted as a function of the strata’s locations to obtain the 
EPRF for the individual. To form a curve one connects the average probabilities (or in 
the case of the OPRF, the proportions) for each stratum. The OPRF may be overlaid on 
the EPRF to facilitate comparison of the two curves. In some cases it may be necessary 
to smooth the OPRF to reduce irregularities by, for example, using spline smoothing. 
Alternative approaches for PRF analysis use kernel smoothing or logistic regression to 
avoid the creation of strata (cf. Emmons, Sijtsma, & Meijer, 2004).

With item fit analyses we suggest that one use a combination of graphical approaches 
(e.g., empirical vs. predicted IRFs) and statistical indices for determining item fit. This 
same philosophy can be applied to assessing person fit. Specifically, a numerical index 
is used to identify individuals who merit further inspection and the PRF is the graphical 
approach for performing this inspection.

There are various indices that could be used to identify individuals for whom OPRFs 
and EPRFs should be created and examined. Meijer and Sijtsma (2001) present a review 
of some of these indices and recommend the UB statistic and Klauer and Rettig’s (1990) 
chi-square statistic.

The UB statistic (Smith, 1985) is

	 UB = 
=

−
− ∑

2S

1

( )1

S 1
s s

ss

O E

V
,	 (G.18)

where sO  = ∑
sL

jx , sE  = ∑
sL

jp , and sV  = −∑
sL

(1 )j jp p . This statistic may be standard-
ized by a cube root transformation (Smith, 1985). As such, a standard normal table could 
be used to provide screening values that would identify individuals who warrant further 
scrutiny.

An alternative to the UB statistic is Klauer and Rettig’s (1990) chi-square statistic. 
Their standardized person fit statistic is asymptotically distributed as a χ2

 with the 
number of strata minus one as the df. Their statistic is

	 χ2
SC  = 

θ
θ∑

2ˆ[ ( )]
ˆ( )

S
s

s

W

I
,	 (G.19)

where for the 3PL model the available information for estimating θ , θ̂( )sI , is given by

	 θ̂( )sI  = 
α

χ χ
−

− −

2

2 2

(1 )
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j j j j
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and

	 θ̂( )sW  = 
α θ δ

α
α θ δ

−
−

+ −∑
sL ˆexp( ( ))

[ ]ˆ1 exp( ( ))

j j
j j j

j j j

x p
p

.	 (G.21)

Although Equations G.18 and G.19 are also appropriate for the 1PL and 2PL models. 
That is, for the 2PL model χ j = 0 and for the 1PL model one sets α j  = 1 and χ j = 0.
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Klauer and Rettig (1990) have evaluated the significance of χ2
SC  with a significance 

level of 0.10; a significant χ2
SC  indicates a misfitting person. Other indices that can be 

used to identify individuals for further (graphical) scrutiny may be found in Drasgow, 
Levine, and Williams (1985), Levine and Drasgow (1988), Meijer and Sijtsma (2001), 
Reise (2000), and van der Flier (1982).

LINKING: A TEMPERATURE ANALOGY EXAMPLE

Linking is analogous to comparing temperature on the Celsius scale with temperature 
on the Fahrenheit scale. Because of differences in the origin and units of the two met-
rics, a meaningful direct comparison cannot be made between a temperature of, for 
example, 32 degrees on the Celsius metric, with a temperature of 32 degrees on the 
Fahrenheit scale without first transforming one metric to the other. This linear trans-
formation (e.g., F  = 1.8( C ) + 32) amounts to (1) aligning the origins of the metrics to 
one another (i.e., the zero points) so that the “zero point” is equivalent in meaning on 
both scales (e.g., add 32 to the temperature on the Celsius scale so that 0 C  is equiva-
lent to 32 F ), and (2) transforming the units in one metric to be the same size as the 
units on the other metric (e.g., 1 unit on the Celsius scale is equivalent to 1.8 units on 
the Fahrenheit scale). In short, the linear transformation from one metric to another 
involves one constant having to do with the units and another constant dealing with the 
different origins.

To show the parallel between this analogy and IRT metric alignment, we link the 
Celsius scale to the Fahrenheit scale using “mean-sigma” approach (see Chapter 11). 
Table G.5 presents the annual monthly high temperature readings from Fargo, North 
Dakota and Tucson, Arizona in both Celsius ( C ) and Fahrenheit ( F ). For both data 
sets the Celsius scale is the initial metric and the Fahrenheit scale is the target metric; 
the temperature readings are analogous to item locations.

To transform the Fargo Celsius readings to Fahrenheit, we obtain the metric trans-
formation coefficients for the Fargo data by Equation 11.7

	 ζ  = 
δ

δ

*s

s
 = 

24.8

13.8
 = 1.80

and by Equation 11.6

	 κ  = δ *  – ζ δ( )  = 51.3 – 1.80(10.7) = 32

Therefore, by substitution into Equation 11.1 we have

	 ξ *  = ζ ξ( )  + κ = 1.80( ξ ) + 32

where ξ  = C  and ξ*  = F .
In Chapter 11 we stated the transformation should be independent of the groups of 

individuals used to develop the transformation (i.e., the transformation is unique). To 

		  Miscellanea	 107



demonstrate this, we use our Tucson data. Our metric transformation coefficients with 
the Tucson data are

	 ζ  = 
δ

δ

*s

s
 = 

13.3

7.4
 = 1.80

and

	 κ  = δ *  – ζ δ( )  = 81.5 – 1.80(27.5) = 32

Because the linking equation, ξ * = 1.80( ξ ) + 32, transcends our data sets the 
alignment of the metrics is successful. Thus, the transformation results in all values on 
a common metric. These principles for handling different temperature scales also apply 
for aligning IRT metrics.

SHOULD DIF ANALYSES BE BASED ON LATENT CLASSES?

In Chapter 12 we discuss traditional DIF analyses. These analyses create two groups 
with known manifest characteristics (e.g., female and male subsamples). Therefore, 
there is a de facto (perhaps innocuous) assumption that individuals within a manifest 

TABLE G.5.  Temperature Analogy for Metric Linking

Fargo Daily High Tucson Daily High

Month °F °C Month °F °C

  1 15.4 –9.2   1 63.5 17.5

  2 20.6 –6.3   2 67.0 19.4

  3 33.5   0.8   3 71.5 21.9

  4 52.6 11.4   4 80.7 27.1

  5 66.8 19.3   5 89.6 32.0

  6 75.9 24.4   6 97.9 36.6

  7 82.6 28.1   7 98.3 36.8

  8 81.6 27.6   8 95.3 35.2

  9 69.6 20.9   9 93.1 33.9

10 58.4 14.7 10 83.8 28.8

11 37.2   2.9 11 72.2 22.3

12 21.9 –5.6 12 64.8 18.2

M 51.3 10.7 M 81.5 27.5

SD 24.8 13.8 SD 13.3   7.4
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group are homogeneous. It can be argued that this assumption may not always be ten-
able, is not necessary to make, and that violation of the assumption may lead to false DIF 
conclusions. For instance, there may be a subgroup of the Focal group that is disadvan-
taged by one or more items, but the rest of the Focal group is not disadvantaged. In this 
case, the subgroup is not at all like the majority of the Focal group (i.e., the Focal group 
is not homogeneous). However, the relative sizes of the Focal subgroup and the majority 
Focal group may result in the masking of DIF for one or more items. Consequently, the 
items do not appear to be exhibiting DIF when, in fact, they do for the subgroup.

Consider, for example, the use of race or ethnic background for manifest group-
ing. This strategy treats all members of the group as equivalent and ignores intramani-
fest group differences. An Asian American manifest group lumps, for example, Fili-
pino, Korean, Indonesian, Taiwanese, and Asian Indians (to name but a few) together. 
Similarly, a Hispanic/Latinx focal group would include Cubans, Guatemalans, Mexican 
Americans, Peruvians, Columbians, Argentines, Puerto Ricans, and so on. These cultur-
ally distinct groups are also potentially confounded with recency of immigration. The 
same could be said of a Caucasian manifest group, as well as an African American mani-
fest group. An African American manifest group would include recent immigrants from 
Haiti, Nigeria, Trinidad, and Ghana, as well as African Americans whose families have 
lived in the United States for hundreds of years. Similarly, the homogeneity of males and 
of females may also be questioned.

de Ayala, Kim, Stapleton, and Dayton (2003) proposed that DIF analyses should 
focus on latent classes (LCs), not manifest groups. By focusing on LCs one avoids the 
assumption that manifest groups are homogeneous. Thus, our data may reflect a mix-
ture of multiple latent populations or classes. Within each of these latent classes there 
are quantitative individual differences, but the classes are qualitatively different. Within 
a class there is a latent continuum, and this continuum is wholly or in part different 
from those in other classes. Therefore, our modeling of the data involves both latent 
classes and latent continua; see “Mixture Models” in this Appendix F. There is a multi-
dimensional aspect to this DIF conceptualization, albeit different from that seen in the 
multidimensional item response theory interpretation of DIF (e.g., see Ackerman, 1996; 
Camilli, 1992; Reckase, 1997b). (Frederickx, Tuerlinckx, De Boeck, and Magis [2010] 
present an alternative in which one has a DIF class and a non-DIF class.)

In the simplest multiclass situation the sample consists of a mixture of two latent 
classes. If the latent classes are functionally equivalent to the manifest groups (i.e., 
100% of the Reference group members belong to one latent class and 100% of the Focal 
group members are in another latent class), then the manifest groups are homogeneous 
and the current approach to DIF analysis is appropriate. (Obviously, this would also 
be true if the data consisted of a one-class structure.) However, if the latent classes are 
not isomorphic with the manifest groups, then the latent classes contain a mixture of 
members from the different manifest groups. For example, one latent class may consist 
of 80% Reference manifest group members, whereas the other latent class may contain 
80% Focal group members. According to this conceptualization, DIF analyses may be 
improved by determining the latent class structure first and then using this information 
for conducting the DIF analysis.
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THE SEPARATION AND RELIABILITY INDICES

In Chapter 3 we state that the person SEPARATION index gives an indication of how 
well the instrument can separate or distinguish persons in terms of their latent variable 
locations. In this section we provide some of the technical aspects of this index and the 
RELIABILITY index discussed in Chapters 3 and 7. Both of these indices may be calcu-
lated for people and items. We first treat these indices for respondents and then for items.

The person SEPARATION index is the ratio of the ADJ.SD to RMSE (Wright & 
Masters, 1982) with a lower bound of 0, no upper bound, and is expressed in standard 
error units. According to Wright and Masters (1982), the person ADJ.SD provides an 
estimate of the “true” person standard deviation from which measurement error-caused 
bias has been removed. (Measurement error is that part of the total variability unac-
counted for by the model.) The ADJ.SD is

	 θ. ( )ADJ SD  = θ θ−2 2
ˆ

ˆ( )SD RMSE .	 (G.22)

For example, using the results from the top-half of Table 3.3, we have an observed SD 
for people of 

θ̂SD  = S.D. = 1.39. Our “average measurement error” for nonextreme 
examinees is REAL RMSE = 1.34 gives us an ADJ.SD = −2 21.39 1.34  = 0.37. Therefore, 
the SEPARATION ratio is SEP  = θ θˆ ˆ. ( ) / ( )ADJ SD RMSE  = ADJ.SD/RMSE = 0.37/1.34 
= 0.28; these calculated values match (within rounding) those from the table. (These 
equations also apply to the MODEL RMSE line.) The SEPARATION ratio is related to 
the number of “statistically different performance strata that the test can identify in the 
sample” (Wright, 1996). The number of distinct strata is (4* SEP +1)/3 (Fischer, 1992). 
For instance, a SEP  of 3 implies INT((4*3+1)/3) = 4 strata where INT indicates to drop 
the decimal portion of the number. Because “large” SEPARATION ratio values represent 
a “large” number of strata they are considered better than small ones. In our case, our 
SEPARATION ratio is a poor value; this is primarily due to our test’s short length.

Because the SEPARATION index does not have a finite upper bound, it is sometimes 
beneficial to transform it. The SEPARATION ratio is directly related to the bounded 
SEPARATION RELIABILITY index ( REL ) such that as the number of strata increase 
so does coefficient alpha (Fisher, 1992). For example, a SEP  = 3 is associated with a 
REL  of 0.90. Specifically, Linacre and Wright (2001) state that the SEP  and REL  indi-
ces are related as

	 REL  = 
+

2

21

SEP

SEP
	 (G.23)

and

	 SEP  = 
−(1 )

REL

REL
.	 (G.24)

The person SEPARATION RELIABILITY is another way to estimate reliability (see 
Linacre, 1996, 1997). REL  tells us about the consistency or reproducibility of the θ̂s . One 
way of looking at this index is that it indicates the consistency (reproducibility) of the 
θ̂s  across (mirror) instruments designed to measure the same latent variable. Its range 
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is from 0 to 1, with values close to or at 1 considered better than values approaching or 
at 0. According to Fischer (1992) a REL  < 0.5 indicates that the differences between θ̂s  
are mainly due to measurement error. As was the case with the SEPARATION index, the 
RELIABILITY index (Wright & Masters, 1982) is based on the θ̂( )ADJSD

	 REL = 
θ

θ 2

2
ˆ

ˆ. ( )ADJ SD

SD
.	 (G.25)

As an example, using the analysis from Table 3.3 we have that the RELIABILITY 
for the REAL RMSE (nonextreme) line in the table is RELIABILITY = 0.392/1.392 = 
0.08. This value indicates that the mathematics instrument is not doing a good job of 
distinguishing people. As a result, there is little reason to believe that we would obtain 
the same ordering of people with a different set of items measuring mathematics profi-
ciency (i.e., the proportion of observed sample variance that is not due to measurement 
error is quite low).

As is the case with INFIT and OUTFIT, we can calculate SEPARATION and RELI-
ABILITY for items. The item SEPARATION index gives an indication of how well the 
instrument can separate or distinguish items in terms of their latent variable locations. 
The premise of this index is that one would like items to be sufficiently well separated 
(i.e., in terms of their locations) to identify the direction and the meaning of the latent 
variable (Wright & Masters, 1982). As such, we would like to see little estimation error. 
This last aspect is assessed by the (item) RELIABILITY index. These two indices are 
calculated in a manner somewhat parallel to that used with persons. Specifically, the

	 item δ̂. ( )ADJ SD  = δ δ−2 2
ˆ

ˆ( ( ) )SD V RMSE , 	 (G.26)

with

	 item SEP  = 
δ
δ

ˆ. ( )
ˆ( )

ADJ SD

RMSE
	 (G.27)

and

	 item REL = 
δ

δ 2

2
ˆ

ˆ. ( )ADJ SD

SD .	 (G.28)

V is an “overall test-to-sample fit mean square” (Wright & Masters, 1982, p. 92). An item 
RELIABILITY of 1.00 indicates the instrument is creating a well-defined variable. This 
is the case for our test with an item REL  = 1.00 (see the bottom-half of Table 3.3).

DEPENDENCY IN TRADITIONAL ITEM STATISTICS 
AND OBSERVED SCORES

In Chapter 3 we discuss the concept of invariance. This property is desirable and useful 
because it frees the practitioner from the specific characteristics of the instrument and 
samples used. Below we demonstrate that this property is not present in the application 
of CTT, but is exhibited in IRT.
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Assume that we administer a 10-item instrument to each of two groups. Although 
our instrument measures mathematical reasoning (MR), the following demonstration 
also applies to other types of instruments, such as a delinquency scale or a survey of 
attitudes on global warming. The examinees’ responses are scored “correct” and “incor-
rect.” The first group consists of 1000 examinees and is high on the MR continuum, 
with an average number correct of 6.741 items (SD = 1.844), whereas the second group of 
1000 examinees is low on this continuum (M = 1.551, SD = 1.195). We refer to the former 
group as the high group and the latter group as the low group.

In a traditional item analysis we calculate various indices, such as a reliability esti-
mate, item discrimination indices, and the item difficulty index, to name just a few. One 
item discrimination index is the correlation between the responses on an item and the 
observed scores (e.g., the point biserial), and the traditional measure of an item’s dif-
ficulty is the proportion of correct responses on an item (i.e., the item’s P-value, jP , or 
its mean). Using the high-group data, the instrument’s coefficient alpha is 0.556, and for 
the low group the coefficient alpha is 0.404. Table G.6 contains the traditional item sta-
tistics for the two groups. As we see, the items have different characteristics across the 
two groups. For example, in general the items discriminate (i.e., the sCr ) better in the 
MR high group than in the low group. Furthermore, the item difficulties (i.e., the sjP ) 
indicate that the items are easier in the high group than in the low group; low values of 

jP  indicate a difficult item and high jP  values reflect an easy item. Therefore, our inter-
pretations of these item indices would be conditional on the sample. For instance, item 

TABLE G.6.  Traditional and IRT Item Statistics

Item

Traditional IRT

High MR Low MR
High 
MR

Low 
MR

j
P

C
r j

P
C

r δ̂ δ̂

  1 0.751 0.256 0.082 0.144 –1.369   2.840

  2 0.973 0.128 0.491 0.268 –4.201   0.044

  3 0.365 0.278 0.011 0.090   0.691   5.052

  4 0.693 0.248 0.060 0.127 –1.015   3.208

  5 0.724 0.271 0.069 0.186 –1.199   3.046

  6 0.494 0.306 0.022 0.125   0.030   4.319

  7 0.978 0.078 0.596 0.256 –4.428 –0.476

  8 0.297 0.308 0.009 0.046   1.072   5.260

  9 0.856 0.240 0.169 0.197 –2.179   1.910

10 0.610 0.268 0.042 0.089 –0.560   3.612

Note. C
r  is the corrected item-total correlation between an item’s responses and 

the observed scores; j
P  is the proportion of correct responses to item j.

112	 Appendix G	



1 is an “easy” item if it is administered to the high group, but it is a “hard” item when 
administered to the low group. (This is analogous to the situation in which the unit for 
measuring a box is the length of a string based on the shortest dimension of the box; 
see Chapter 1.) Moreover, this item is a poor discriminator in the low group, but a more 
reasonable (although not good) discriminator in the high group.

Given that the item statistics vary as a function of the sample used in their calcula-
tion, we might ask, “What is the relationship between the item statistics across the two 
samples?” The correlation between the item discriminations for the high and low groups 
is –0.852 and between the item difficulties it is 0.796. Figure G.4 shows that the linear 
relationship between the item difficulties across groups is not as strong as the correla-
tion of 0.796 might suggest. That is, the two groups’ item difficulties are nonlinearly 
related and are influenced to a large extent by the characteristics of the sample on which 
they were calculated.

We now turn to applying our 1PL model to these data. After separately calibrating 
the instrument for the high and low groups, we obtain two sets of δ̂s ; see the two right-
most columns in Table G.6. As would be expected from our indeterminacy discussion 
(Chapter 3), the two sets of δ̂s  are not equal. For instance, item 1 is estimated to be 
located at –1.369 with the high group, but the item is estimated to be located at 2.840 
for the low group. However, a closer examination reveals that the relative positions 
among the item location estimates is essentially the same across the two. The correla-
tion between these estimates for the high and low groups is 0.999; the scatterplot is 
presented in Figure G.5. Unlike the P-value scatterplot, Figure G.5 shows that the near 
perfect correlation of 0.999 accurately reflects the linear relationship between the two 
sets of estimates. This very strong linear relationship shows that our IRT item charac-
terizations transcend the sample characteristics, whereas the traditional indices do not. 
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FIGURE G.4.  Scatterplot of traditional item difficulties.
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Moreover, although our interpretation of an item’s traditional difficulty as “easy” or 
“hard” is conditional on the proficiency of the examinee group, with IRT we do not need 
this qualification after we align the metrics (Chapter 11).5

As is the case with most estimation problems, sample size is an important determi-
nant of the quality of estimation. Therefore, we halve the sample size to show that the 
invariance of our estimates continues to exist. With half as many examinees in each 
sample, the correlation between the traditional item discriminations for the high and 
low groups decreases to –0.284, whereas the correlation between the traditional item 
difficulties becomes 0.782; the nonlinearity seen in Figure G.4 continues to exist. In con-
trast, the correlation between the IRT item location estimates remains strong (r = 0.978). 
As such, the effect of examinee characteristics (e.g., high vs. low proficiency) continue to 
affect the traditional item indices, but still do not affect our IRT item parameter estimates.

So far we have been concerned with how sample characteristics affect our item sta-
tistics. We now turn to the complementary question: “How do the characteristics of our 
instrument (e.g., the difficulty of an examination) affect the person location estimates?” 
To examine this question, assume that an item pool of 40 vocabulary items is divided 
into two tests. The first test consists of the 20 easiest items with a mean difficulty (δ ) of 
–1.0141, a SD = 1.0582 and minimum and maximum difficulties of –2.4390 and 0.5470, 
respectively. The second test contains the 20 hardest items (δ = 1.4529, SD = 0.7578, 
minimum = –0.5690, maximum = 2.9510). In the following, the first test is referred to as 
the Easy test, whereas the second test is known as the Hard test.

Through a Monte Carlo study we simulate the administration of these two tests 
to 1000 examinees randomly sampled from a normal distribution and whose locations 
(θs ) are known.6 Examining the responses, we see that the first examinee correctly 
answered 12 and 6 items on the Easy and Hard examinations, respectively. It is self-
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FIGURE G.5.  Scatterplot of IRT item locations.
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evident that a person’s observed score is affected by the easiness or difficulty of the 
examination. In fact, comparing the observed scores for the 1000 examinees across the 
Easy/Hard tests using a paired t-test shows the two sets of observed scores are signifi-
cantly different from one another (t = 101.215, p = 0.000); the correlation between the 
observed scores from the Hard examination and those from the Easy examination is 
0.713. Therefore, an examinee’s observed score is dependent on the instrument’s char-
acteristics. Of course, whether a given score is an accurate assessment of an examinee’s 
location on the construct is a validity question.

To estimate the locations of the 1000 examinees we use the Rasch model with 
EAP (Chapter 4). The estimate of the first examinee’s location (θ1

ˆ ) is –0.3955 accord-
ing to the Easy test and 0.3790 according to the Hard test. Similar to what is seen with 
the observed scores, there are two different person location estimates for each person. 
However, if there is model-data fit these estimates should be strongly linearly related 
and we can linearly transform the θ̂s  from the Easy test metric to the Hard test metric 
or vice versa. (How this is done is demonstrated in Chapter 4 in the discussion of metric 
transformation.) Whether the θ̂  represents an examinee’s location on the construct of 
interest is still a validity question.

The Pearson correlation between the Hard test θ̂s  and those from the Easy test is 
0.743. This correlation is similar to what we see with the observed scores. As such, we 
have not shown that our IRT person location estimates are not influenced by the instru-
ment’s characteristics. However, there are two primary reasons for the magnitude of this 
correlation. The first is that the tests provide information over a limited range of the θ  
continuum, and the second is the asymptotic nature of estimation. We discuss each of 
these reasons in turn.

To understand the first reason, compare the test’s difficulty range with the range 
of person locations. Because the examinees are normally distributed we expect that 
approximately 99% of the examinees to be located from –3 to 3. However, the Easy test 
does not have items above 0.547 and the Hard examination does not have items located 
below –0.569. Therefore, for both examinations we need to estimate person locations 
that are beyond the range represented by the examination (e.g., estimating a person 
located above the Easy test’s most difficult item, δ  = 0.547). At this point it appears that 
this argument may also be used to explain the CTT results. Therefore, it still remains 
to be shown that despite the Easy and Hard examinations’ item location distributions 
we can obtain θ̂s  that are highly linearly related—in effect, obtaining person location 
estimates that are not influenced by the instrument’s characteristics.

The second reason, the asymptotic nature of estimation, addresses the issue of esti-
mating person locations that are not influenced by the instrument’s characteristics. In 
our current situation we have only 20 observations (i.e., items) for estimating the exam-
inees’ locations. In contrast, for estimating the item locations there are 1000 observa-
tions (i.e., examinees) available. It is in this discrepancy in the number of observations 
for estimation that we find the explanation for the magnitude of the correlation.

The θ̂s  are asymptotically unbiased which, in effect, means that one needs a large 
number of items to compensate for the tests’ truncated item location distributions. (If 
the tests contained items that spanned the full range of interest, then the issue of test 
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length would not be as much consequence as it is in this example.) To demonstrate this 
issue we increase the number of items on each examination while still restricting the 
range of the items to be the same as the 20-item tests. Specifically, we increase the Hard 
and Easy test lengths to 100 items while restricting their respective difficulty ranges to 
match those from the corresponding 20-item tests. This means that for the 100-item 
Easy test there are no items more difficult than 0.547 and for the 100-item Hard exami-
nation there are no items easier than –0.569. Using these 100-item tests, the persons’ 
locations are re-estimated. The correlation between the re-estimated θ̂s  from the Easy 
test and those from the Hard test increases to 0.933. This is a substantial improvement 
over our 20-item Easy and Hard tests’ results and shows that person estimation is not 
adversely affected by the range of item locations of the instrument. If we continue to 
increase the length of each test to 250, 500, and 1000 items, then the respective correla-
tions between the Easy and Hard tests’ θ̂s  become 0.969, 0.982, and 0.987. Therefore, a 
test’s level of difficulty does not adversely affect the person location estimation and our 
estimates of person location are “free” of the instrument’s characteristics. Obviously, 
increasing the test length would not eliminate the test dependency issue seen with CTT.

As we would expect, as the number of items increases, the corresponding stan-
dard errors, θ̂( )ses , decrease. For example, the mean θ̂( )ses  for the 20-item tests are 
0.502 for the Easy test and 0.514 for the Hard test. However, if we lengthen the tests 
to 100 items, then the mean θ̂( )es  decreases to 0.248 for the Easy test and to 0.262 
for the Hard test. Further increasing the test length to 250 and 500 items results in 
the mean θ̂( )ses  falling to 0.162 (Easy)/0.165 (Hard) and 0.109 (Easy)/0.110 (Hard), 
respectively. With 1000 items the mean θ̂( )es  decreases to 0.063 for the Easy test and 
to 0.061 for the Hard test.

The preceding two observations concerning item and person location estimation 
may be summarized as specific objectivity. Loosely speaking, specific objectivity means 
that what one is interested in measuring does not affect the measuring instrument and 
the measuring instrument does not affect what is being measured.7 When this level 
of objectiveness is realized then it is “possible to generalize measurement beyond the 
particular instrument used, to compare objects measured on similar but not identical 
instruments, and to combine or partition instruments to suit new measurement require-
ments” (Wright, 1968, p. 87). Wright (1968) has referred to the capability of obtaining 
item parameter estimates that are not influenced by the sample of individuals as person-
free test calibration; this is also known as item-parameter invariance (Lord, 1980) and 
object-free instrument calibration (Wright, 1968). Moreover, Wright refers to the capac-
ity to estimate a person’s location “free” of the instrument’s characteristics as item-free 
person measurement; this is also known as person-parameter invariance (Lord, 1980) and 
instrument-free object measurement (Wright, 1968). (“Person-free” and “item-free” should 
not be taken literally.) Therefore, IRT’s invariance property is the realization of Thur-
stone’s (1928) idea that “the scale must transcend the group measured” (p. 547). For an 
instrument to be accepted as valid, then it must not be seriously affected in its measur-
ing function by the object of measurement, and “to the extent that its measuring func-
tion is affected, the validity of the instrument is impaired or limited” (p. 547).
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CONDITIONAL INDEPENDENCE USING Q3

To use Q3 for evaluating the conditional independence assumption we first calculate Q3, 
determine a screening value, and then perform our comparison. With a five-item instru-
ment there are 10 Q3 values (i.e., L(L – 1)/2) to calculate. Although a statistical package 
can be used to calculate Q3, we use a spreadsheet program. To calculate Q3 we need our 
person location estimates to calculate the expected responses, sjp . For instance, in 
our 3PL model calibration (see Table 6.1) we requested that the EAP θ̂s  be saved to a 
file (i.e., “MATH3PL_EAP.SCO”). In addition to these θ̂s , we import our response data 
and the item parameter estimates. Using the θ̂s  and the item parameter estimates we 
calculate the sjp  for each respondent. Comparing our observed responses to the cor-
responding sjp  we determine the residuals θ− ˆ( ( ))ij j ix p for each item and each person. 
The Pearson product–moment correlation function is used to calculate the correlations 
(i.e., the Q3s) among the unique residual pairings. Table G.7 contains these Q3s for the 
mathematics data example; the scatterplots (not presented) corresponding to these val-
ues were inspected for anomalies, but none were found. Not surprisingly, given the 
instrument’s length, only one of the Q3s is positive; the average Q3 is –0.1799.

As noted above, Yen’s (1993) suggestion of a 0.2 screening criterion was in the 
context of instruments that had at least 17 items (i.e., an expected Q3 value of –1/
(L – 1) = –0.0625). However, the expected Q3 value for our 5-item mathematics test is 
–0.25. This value is substantially farther away from 0 than the expected Q3 value in 
Yen’s (1993) study. Therefore, although a ±0.2 screening criterion may be useful when 
the expected Q3 value is comparatively close to 0 (e.g., with 35 or more items), with 
only 5 items this criterion is less useful. As a result, rather than use the 0.2 screening 
criterion we determine the screening value for our 5-item instrument. To identify our 
screening criterion we conduct a simulation that showed the magnitude of Q3s that 

TABLE G.7.  3sQ  for the Math Data Set;  
2
3sQ  Are in Parentheses

Items

1 2 3 4 5

1   1.0000

2 –0.1810
  (0.0328)

  1.0000

3 –0.0985
  (0.0097)

–0.3037
  (0.0922)

  1.0000

4 –0.0915
  (0.0084)

–0.2134
  (0.0455)

–0.2087
  (0.0436)

  1.0000

5 –0.0581
  (0.0034)

–0.1366
  (0.0187)

–0.0988
  (0.0098)

–0.1566
  (0.0245)

1.0000
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might be expected to be observed if the data conformed to the model’s conditional 
independence assumption.

This simulation can be performed with a statistical package (e.g., SAS) or a pro-
gramming language (e.g., FORTRAN, R). In our case, the simulation consists of ran-
domly sampling N = 19,601 standard unit normal zs from a normal distribution. These 
zs are the persons’ θs ; these “persons” are referred to as simulees. To generate a simu-
lee’s item response we use the item’s parameter estimates from Table 6.3 and the simu-
lee’s θ  to calculate the probability of a response of 1 according to our 3PL model. This 
probability ( jp ) is compared with a uniform random number. If the uniform random 
number is less than or equal to the calculated probability, then the simulee’s response to 
the item is coded as 1, otherwise it is coded as 0. This process is repeated for each item 
and for each simulee. In effect, we have created a parallel data set with the same number 
of respondents and items as our empirical data except that these data are, by definition, 
conditionally independent.

Because in practice we have only an estimate of θ  we obtain each simulee’s EAP 
location estimate using the item parameter estimates and the simulee’s response vec-
tor. These EAP θ̂s  along with our item parameter estimates are used to determine the 
expected response for each item for each simulee. To obtain our residuals we calculate 
the expected response (i.e., jp ) and compare it to the corresponding simulated response 
for each item and each simulee. The intercorrelations among these item residuals are 
calculated and recorded. The entire process, from sampling the N standard unit normal 
zs to calculating the Q3s, is repeated a few thousand times (e.g., 5000). With five items 
there are 10 unique Q3s (i.e., L(L – 1)/2) or 10*5000 = 50,000 Q3s across the 5000 replica-
tions. The Q3 value corresponding to the bottom 5% (i.e., 5% total) of the Q3 (null) dis-
tribution is –0.293485 with minimum and the maximum Q3s are –0.3194 and –0.0171, 
respectively.

Having obtained our screening value (–0.2935) we return to our empirical data. 
Our Q3s show that we have one item pair (items 2 and 3) that has an absolute value 
exceeding the screening value of 0.2935. That is, after fitting the unidimensional 3PL 
model to the data the items in this item pair has almost 10% of their residual variability 
in common. (This item pair may or may not be found to exceed the screening criterion 
with either the 1PL or 2PL models.) As we did in Chapter 6 we also use a “gap” approach 
informed by 3Q  to identify values that reflect item dependence ( 3Q = –0.1541). Figure 
G.6 contains our dot density plot for 3Q . As can be seen, we have a cluster of item pairs 
in the range of approximately –0.22 to –0.05 that are clustered about 3Q . Our item pair 
2–3 shows a sizable gap to the item pair cluster. This is also the item pair flagged by 3

PQ . 
The italicized 3sQ  (Table G.7) are the additional item pairs flagged by 3

PQ . Comparing 
the 3

PQ results with those of 3Q  shows that it appears that not controlling for variability 
shared across residuals can potentially mask item pairs that should be furthered exam-
ined for conditional dependence. Although the item pair 2–3 may be considered to be 
exhibiting item dependence, evidence of conditional dependence in the remaining nine 
pairs is absent. How one deals with items that are considered sufficiently dependent to 
be problematic post-administration is discussed in Chapter 6.

118	 Appendix G	



STANDALONE NOHARM CALIBRATION OF INTERPERSONAL 
ENGAGEMENT INSTRUMENT, M2PL MODEL

To perform our analysis we prepare an ASCII input file (Table G.8) that is subsequently 
submitted to NOHARM. The first command line in the input file contains a title for 
the analysis with the remaining lines specifying the analysis setup. The second line 
“10 2 1000 0 1 0 0 0” specifies that there are 10 items and a two-dimensional 
analysis based on 1000 cases, that the input data consist of binary responses, to per-
form an exploratory analysis, and that NOHARM should generate its starting values and 
print the correlation, covariance, and residual matrices, respectively. The subsequent 
line allows the user to provide the IRF’s lower asymptote value for each of the 10 items. 
Because we are fitting a two-parameter model this line contains one zero for each item. 
However, if we were using the M3PL model we would provide an estimate of the lower 
asymptotes on this line. These estimates may be obtained by calibrating the data with 
the 3PL model and using the corresponding χ j  estimates as input for the M3PL model 
calibration. This approach has been found to work well with two-dimensional data, but 
not as well with four-dimensional data (DeMars, 2007).

Following this line are the binary responses for the 1000 individuals. (Note that 
when the data consist of binary response vectors, the number of cases specified on line 
2 is used for reading the data. If the number of cases specified on line 2 does not match 
the number of response lines, then an error will occur [i.e., “Unexpected end-of-
file when . . .”].)

-0.5 -0.4 -0.3 -0.2 -0.1 0.0

3Q

3Q

FIGURE G.6. D ot density plot for 3Q .

TABLE G.8.  Two Dimensional Input Command File  
(name = intrprsnl.inp)

    Interpersonal Ex, 2 dimensions, raw data input, exploratory
    10  2  1000  0  1  0  0  0
    0 0 0 0 0 0 0 0 0 0  
1 1 1 0 1 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0
1 1 1 0 0 0 0 0 0 1
1 1 0 1 0 0 1 0 0 0
1 1 0 1 0 0 0 1 0 0
:
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Table G.9 contains the corresponding output. The beginning of the output contains 
echoes of the input specifications, initial starting values, the covariance matrix, and so 
on, followed by the Results section. We first discuss model-data fit before returning 
to the item parameter estimates.

As mentioned in Chapter 3, NOHARM produces a residual matrix to facilitate 
assessing model-data fit. The residual matrix is the discrepancy between the observed 
covariances and those after the model is fitted to the data. Therefore, the ideal situation 
is where these discrepancies are zero. Our residuals are comparatively small vis-à-vis 
the observed item covariances, with almost all residual magnitudes in the thousandths’ 
place or less. To summarize the residual matrix, NOHARM provides the root mean 
square (RMS). As we discuss in Chapter 3, the RMS is the square root of the average 
squared difference between the observed and predicted covariances. Therefore, small 
values of RMS reflect good fit. This overall measure of model-data misfit is evaluated 
by comparing it to four times the reciprocal of the square root of the sample size (i.e., 
the “typical” standard error of the residuals). For these data this criterion is 0.1265. The 
observed RMS of 0.0033523 indicates that we have evidence of model-data fit. For this 
example the residual matrix, the RMS, and the GFI all indicate good model-data fit. 
Therefore, we proceed to examine the item parameter estimates.

The output following the residual matrix contains the common factor parameter-
ization of the MIRT model. Whether this information is used depends on one’s purpose 
(e.g., see McDonald, 1997; Reckase, 1997a). The sections labeled Factor Loadings, 
Varimax Rotated Factor Loadings, Unique Variances, and Promax 
(oblique) Rotated Factor Loadngs [sic] contain the values based on the com-
mon factor model. Intermixed within these sections are two additional sections titled 
Varimax Rotated Coefficients of Theta and Promax Rotated Coef-
ficients of Theta that contain the common factor model’s reparameterization into 
the MIRT model.

The estimated MIRT model is a reparameterization of the common factor model 
(see Appendix C). Therefore, the common factor model’s loadings may be related to the 
MIRT model item parameters through the item unique variances. The items’ unique 
variances are given on the line labeled Unique Variances and are equal to an item’s com-
munality subtracted from 1 (i.e., unique variance = 1 – ρ Σρj j′ ). For example, for item 1 
we have that its loadings on factors 1 and 2 are 0.809 and 0.0, respectively. Therefore, 
its estimated communality is 2ĥ  = 0.8092 + 0.02 = 0.654 and its unique item variance is 
1 – 0.654 = 0.346. This is item 1’s value in the Unique Variances section.

Dividing each item’s estimated Threshold Values (i.e., from Appendix C; τ̂ sj ) 
by the square root of its corresponding unique variance yields the item’s intercepts (i.e., 
Equation C.29). As an example, for item 1 we have that its estimated threshold τ1

ˆ = 
0.536 and, as a result, its

	 γ = =1
0.536ˆ 0.911

0.346

(i.e., item 1’s value in the Final Constants section). In terms of the Factor Load-
ings matrix, we can divide each item’s factor loading by the square root of its unique 
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TABLE G.9. Output File for the Self-Efficacy to Engage in Making 
Interpersonal Engagement Behavior Instrumenta

                                  N O H A R M
                   Fitting a (multidimensional) Normal Ogive
                     by Harmonic Analysis - Robust Method

     Input File : intrprsnl.inp

     Title :     Interpersonal Ex, 2 dimensions, raw data input, exploratory

     Number of items        =  10
     Number of dimensions   =  2
     Number of subjects     =  1000

     An exploratory solution has been requested.

Sample Product-Moment Matrix
          1       2       3       4       5       6       7       8       9
  1     0.704
  2     0.460   0.557
  3     0.505   0.403   0.614
  4     0.480   0.380   0.426   0.608
  5     0.415   0.323   0.356   0.346   0.511
:

Item Covariance Matrix
          1       2       3       4       5       6       7       8       9
  1     0.208
  2     0.068   0.247
  3     0.073   0.061   0.237
  4     0.052   0.041   0.053   0.238
  5     0.055   0.038   0.042   0.035   0.250
:
                                    =======
                                    Results
                                    =======

Success.  The job converged to the specified criterion.

Final Constants
   1       2       3       4       5       6       7       8       9      10
 0.911   0.177   0.382   0.324   0.031  -0.828  -0.520  -0.627  -0.992  -1.018 ← γ̂ sj

Final Coefficients of Theta   
          1       2
  1     1.374   0.0  
  2     0.724  -0.024
  3     0.858  -0.020
  4     0.581   0.254
  5     0.494   0.079
  6     0.739   0.562
  7     0.650   0.610
  8     0.538   0.505
  9     0.591   0.587
 10     0.606   0.288

(continued)
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TABLE G.9.  (continued)

Final Correlations of Theta
          1       2
  1     1.000
  2     0.0     1.000

Residual Matrix (lower off-diagonals)
          1       2       3       4       5       6       7       8       9
  2   -3.1e-4
  3     0.002  -0.002
  4     0.003   0.002  -0.005
  5    -0.005   0.003   0.002   0.001
  6    -0.002  -0.001   0.002   0.001 -3.1e-4
  7    -0.001   0.002  -0.001   0.008  -0.005  -0.004
  8     0.002  7.0e-5   0.003  -0.006 -1.6e-4   0.003   0.002
  9    2.9e-4  -0.003  -0.001  -0.002   0.005  1.8e-5  -0.004   0.003
 10     0.001  -0.002 -4.3e-4  -0.005   0.004   0.003   0.004  -0.010   0.004

  Sum of squares of residuals (lower off-diagonals)   =    0.0005057
  Root mean square of residuals (lower off-diagonals) =    0.0033523       ← The RMSR
  Tanaka index of goodness of fit                     =    0.9984227       ← The GFI

Threshold Values
     1       2       3       4       5       6       7       8       9      10
   0.536   0.143   0.290   0.274   0.028  -0.607  -0.388  -0.504  -0.762  -0.845

Unique Variances
     1       2       3       4       5       6       7       8       9      10
   0.346   0.656   0.576   0.714   0.800   0.537   0.557   0.647   0.590   0.689

Factor Loadings
          1       2
  1     0.809   0.0  
  2     0.586  -0.019
  3     0.651  -0.015
  4     0.490   0.214
  5     0.442   0.071
  6     0.542   0.412
  7     0.485   0.455
  8     0.433   0.407
  9     0.454   0.451
 10     0.503   0.239

Varimax Rotated Factor Loadings 
          1       2
  1     0.739   0.327
  2     0.544   0.220
  3     0.602   0.249
  4     0.362   0.394
  5     0.375   0.243
  6     0.328   0.596
  7     0.259   0.613
  8     0.231   0.547
  9     0.233   0.596
 10     0.364   0.422

(continued)
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TABLE G.9.  (continued)

Varimax Rotated Coefficients of Theta  ← α ,ˆ sj f
          1       2
  1     1.257   0.557
  2     0.672   0.271
  3     0.793   0.329
  4     0.428   0.467
  5     0.420   0.272
  6     0.448   0.813
  7     0.348   0.821
  8     0.288   0.680
  9     0.303   0.776
 10     0.438   0.509

Promax (oblique) Rotated Factor Loadngs
          1       2
  1     0.810  -0.001
  2     0.610  -0.031
  3     0.670  -0.025
  4     0.241   0.329
  5     0.360   0.108
  6     0.062   0.632
  7    -0.045   0.699
  8    -0.041   0.625
  9    -0.071   0.693
 10     0.225   0.367

Factor Correlations
          1       2
  1     1.000
  2     0.760   1.000

Promax Rotated Coefficients of Theta
          1       2
  1     1.376  -0.002
  2     0.753  -0.038
  3     0.883  -0.033
  4     0.285   0.389
  5     0.402   0.121
  6     0.084   0.863
  7    -0.061   0.937
  8    -0.051   0.776
  9    -0.093   0.901
 10     0.271   0.442

aThe text following the “←” is provided to help the reader understand the corresponding input.
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variance to obtain the item’s estimated discrimination parameter on the corresponding 
dimension (i.e., Equation C.30). For instance, item 2’s loading on dimension 1 is ρ2,1

ˆ  = 
0.586 and its

	 α2,1
ˆ  = =0.586 0.724

0.656

For this item’s relationship to the second dimension, we have ρ2,2
ˆ  = –0.019 and its

	 α2,2
ˆ  = − = −0.019 0.024

0.656

Both of these α ,j f  estimates are found in the Final Coefficients of Theta 
matrix. Similarly, dividing the Varimax Rotated Factor Loadings by the cor-
responding square root of the item’s unique variance yields the Varimax Rotated 
Coefficients of Theta. The entries in this latter matrix yield the same jp  as 
those from the Final Coefficients of Theta section after accounting for rota-
tion. For example, if θʹ = (1.5, –1.0), then using the estimated parameters for items 1 
and 2 one obtains 1p  = 0.95129 and 2p  = 0.78364. Rotating the Factor Loadings 
matrix by approximately 23.872° yields the values in the Varimax Rotated Fac-
tor Loadings matrix and, as a result, this rotation angle is reflected in the Varimax 
Rotated Coefficients of Theta. Therefore, after rotating the θ  by this amount, 
our rotated person locations are θ = (2.6417, –2.2626). Using this θ  and the rotated item 
parameter estimates for items 1 and 2, we obtain *

1p  = 0.95129 and *
2p  = 0.78364. The 

Varimax Rotated Coefficients of Theta estimates may be more meaningful 
in some situations.

The items’ intercept (constant) estimates, γ̂ j s, are found in the section titled Final 
Constants. This section shows that our estimates are γ 1

ˆ  = 0.911, γ 2
ˆ = 0.177, . . . , γ 10

ˆ

= –1.018. The items’ discrimination parameter estimates, α ,
ˆ sj f , are (first) shown in the 

Final Coefficients of Theta section. As would be expected from the discussion 
of indeterminacy, one sees that the first item’s value on the second factor is fixed at zero to 
address the solution’s rotational indeterminacy. We also note that some values are nega-
tive. Barring a mistake (e.g., a miskeyed correct response) or a functional form anomaly 
we want our discrimination parameter estimates to be positive. Consequently, we rotate 
our solution (i.e., the values in the Final Coefficients of Theta section) with-
out loss of information. The Varimax Rotated Coefficients of Theta section 
contains our rotated estimates. The item discrimination parameter estimates for the first 
dimension are α1,1

ˆ  = 1.257, α2,1
ˆ = 0.672, . . . , α10,1

ˆ = 0.438 (i.e., column 1). For the second 
dimension the estimates of the discrimination parameters are α1,2

ˆ  = 0.557, α2,2
ˆ  = 0.271, 

. . . , α10,2
ˆ = 0.509. Comparing these estimates to those of sirt.noharm’s F1 and F2 

(see Table 10.1) we find that dimension 1 estimates correlate over 0.999 with F2 rotated 
estimates and dimension 2’s estimate also correlate over 0.999 with F1 rotated estimates 
(i.e., the dimensions here are reversed from the sirt.noharm results).

Because these estimates are on the normal metric, we need to multiply them 
by D = 1.702 to place them on the logistic metric of the M2PL model. The Final 
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Correlations of Theta section gives the correlation between the θ sf . Table G.10 
presents the estimates and other summary information.

CFI, GFI, M2, RMSEA, TLI, AND SRMR

In Chapter 3 we saw that NOHARM produces several model-data fit indices. We now 
provide slightly greater detail on these indices than above. Tanaka’s (1993) goodness-
of-fit index (GFI; labeled Tanaka Index) involves the sample covariance matrix, C , 
and the residual covariance matrix, resC  (McDonald & Mok, 1995). Specifically, the 
goodness of fit index is

	 GFI = −
2

2

( )
1

( )
resTr

Tr

C

C
,	 (G.29)

where Tr is the matrix’s trace (i.e., the sum of the main diagonal’s elements). A GFI of 1 
indicates perfect fit. McDonald (1999) states that a minimum GFI of 0.90 indicates an 
acceptable level of fit and a minimum value of 0.95 indicates “good” fit.

A second index, root mean square residual (RMSR), is the square root of the average 
squared difference between the observed and predicted covariances with small values 
indicating good fit. This overall measure of model–data misfit may be evaluated by 
comparing it to four times the reciprocal of the square root of the sample size (i.e., the 
“typical” standard error of the residuals; McDonald, 1997). For example, for our math 
data with 19,601 respondents we have 4 19601  = 0.0286.

TABLE G.10.  Summary Statistics for the Interpersonal 
Engagement Behavior Instrument

normal metric logistic metric

1ˆjα 2ˆjα ˆjγ ˆ
jΑ ˆ

j∆ 1jω o
1ˆjα 2ˆjα

1 1.257 0.557   0.911 1.374 –0.663 23.9 2.139 0.948

2 0.672 0.271   0.177 0.725 –0.244 22.0 1.144 0.461

3 0.793 0.329   0.382 0.859 –0.445 22.5 1.350 0.560

4 0.428 0.467   0.324 0.633 –0.511 47.5 0.728 0.795

5 0.420 0.272   0.031 0.500 –0.062 32.9 0.715 0.463

6 0.448 0.813 –0.828 0.928   0.892 61.1 0.762 1.384

7 0.348 0.821 –0.520 0.892   0.583 67.0 0.592 1.397

8 0.288 0.680 –0.627 0.738   0.849 67.0 0.490 1.157

9 0.303 0.776 –0.992 0.833   1.191 68.7 0.516 1.321

10 0.438 0.509 –1.018 0.672   1.516 49.3 0.745 0.866
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Three more indices for assessing model-data fit are the Root Mean Square Error of 
Approximation (RMSEA; Steiger, 1990), the Standardized Root Mean Square Residual 
(SRMR; Hu & Bentler, 1998, 1999), and Gessaroli and De Champlain’s (G&D; Gessaroli 
& De Champlain, 1996) chi square statistic (G&D is discussed above). Following Hu 
and Bentler (1998, 1999) and McDonald and Mok (1995) RMSEA and SRMR are defined 
as

	 RMSEA =
χ −2( )

N
df

df
,	 (G.30)

	 SRMR =
σ  −

  
   

+

∑∑
2

ˆ
2

L(L 1)

jk jk

kk jjj k

s

s s ,	 (G.31)

where σ̂ jk  and jks  are the reproduced and observed covariances, respectively, between 
items j and k, jjs  and 

kks  are the observed standard deviations, with χ2
 and df  

reflecting the model under consideration. According MacCallum et al. (1996) and 
Browne and Cudeck (1993; cited in MacCallum et al., 1996) a RMSEA less than 0.05 
indicates a “close fit,” a value from 0.05 to 0.08 reflects “good/fair” fit, a value from 
0.08 to 0.10 indicates “mediocre” fit, and values greater than 0.10 reflecting “poor” fit; 
Hu and Bentler (1999) suggest a RMSEA a cutoff value “close to” 0.06. With respect to 
SRMR, Hu and Bentler (1999) consider a SRMR a cutoff value “close to” or less than 
0.08 to be good fit.

Two additional indices used by mirt (e.g., Chapter 4) are the Tucker-Lewis Index 
(TLI or non-normed fit index, NNFI; Tucker & Lewis, 1973) and the comparative fit 
index (CFI; Bentler, 1990). TLI is defined as

	 TLI = 

χ χ

χ

 −  
 −  

2 2
0 1

0 1

2
0

0
1

df df

df

,	 (G.32)

where χ2
0  and 0df  correspond to the baseline (null) model and χ2

1  and 1df  are for the 
comparison model. Although TLI has a range of 0 to 1 it is possible to obtain values 
outside this range. In these cases, TLI is set to appropriate boundary value. Values “close 
to” 0.95 or greater indicate good fit (Hu & Bentler, 1999).

CFI is given by

	 CFI = 
χ

χ χ
−

−
− −

2
1 1

2 2
0 0 1 1

max[( ),0]
1

max[( ),( ),0]

df

df df
, 	 (G.33)

where χ −2
1 1( )df  and χ −2

0 0( )df are for the comparison and baseline (null) models, 
respectively. CFI has a range of 0 to 1 with values “close to” 0.95 or larger indicating 
good fit (Hu & Bentler, 1999)
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The M2 statistic belongs to the family of limited information goodness-of-fit statis-
tics. In contrast to other statistics that use a full contingency table that may have many 
small or zero frequency cells, M2 uses the one- and two-way marginal tables that are less 
likely to have small cell frequencies. (There are mL cells in the full contingency table 
where m is the number of response categories (e.g., with binary data and 5 items 25 = 
32 cells).) Research has shown the M2 statistic maintains appropriate Type I error rates 
under varying degrees of model misspecification. M2 is asymptotically distributed as a 
χ2

 with, for binary data, df = 2L – (number of item parameters) – 1.

AN INTRODUCTION TO KERNEL EQUATING

For situations in which a parametric method’s assumptions are untenable nonpara-
metric equating methods may be fruitful. In general, nonparametric approaches make 
fewer assumptions of the underlying mathematical form than do parametric approaches 
and estimate item response functions directly from observed scores (see Lei, Dunbar, 
& Kolen [2004]; von Davier, Holland, & Thayer [2004]). One of these nonparametric 
approaches, kernel equating (KE), is described by von Davier et al. (2004) as “a unified 
approach to test equating based on a flexible family of equipercentile-like equating func-
tions that contains the linear equating function as a special case” (p. 45). In contrast to 
traditional equipercentile equating that uses linear interpolation to continuize the dis-
crete test score distributions, KE uses a Gaussian kernel to perform this continuization 
(Duong & von Davier, 2008; Kolen & Brennan, 2004; Mao et al., 2006; von Davier et al., 
2004). In this regard, fewer mathematical assumptions are made by using this kernel 
than with linear interpolation (von Davier et al., 2004).

There have been only a few studies that directly compare KE to traditional methods. 
These studies have been based on empirical test data and have provided evidence that 
KE is a viable alternative to traditional methods (e.g., Lei, Dunbar & Kolen, 2004; Mao, 
von Davier et al., 2006; von Davier et al., 2004). Specifically, KE appears to perform 
very similar to, and in some circumstances better than, traditional linear and equiper-
centile methods (Mao et al., 2006; von Davier, Holland, & Thayer, 2004; von Davier et 
al., 2006). Other applications of kernel smoothing have demonstrated equivalent per-
formance to parametric continuous response IRT methods (Ferrando, 2004). However, 
research also suggests that KE is affected by factors such as sample size and test length 
(Lee, 2007). KE provides an opportunity to use one family of equating methodologies 
for multiple types of equating designs.

There are two mathematical methods that can be used for KE. One is chain equat-
ing (CE), whereas the other is post-stratification equating (PSE). In CE one first links 
Form X to the anchor test A, followed by linking A to Form Y. In contrast, with PSE the 
marginal distributions of both X and Y in the target population are estimated first and 
then the equating function is computed (von Davier et al., 2004).

The process of performing KE, for CS and PSE approaches, involves five steps: 
(1) pre-smoothing (optional), (2) estimation of the score probabilities, (3) continuiza-
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tion, (4) equating, and (5) calculating the standard error of equating. The pre-smoothing 
step involves estimating the score probabilities for a particular equating design by fitting 
a statistical model (e.g., a log linear model) to each of the form–anchor test score dis-
tributions (i.e., (X, A) in subpopulation P and (Y, A) in subpopulation Q). The resulting 
score distribution is used for the remaining equating process as well as providing the 
matrix that can be used for calculating the standard error of equating (Chen, 2012; von 
Davier et al., 2006).

In the second step the score probability distributions based on the target popula-
tion T are estimated using the smoothed score distributions obtained from the pre-
smoothing in step 1 (von Davier et al., 2006). The third step is the continuization step 
and involves the process of transforming the discrete score distributions for X and Y 
on population T into continuous score distributions over the entire score range by 
using kernel smoothing (von Davier et al., 2006). It is this step that involves the Gauss-
ian kernel smoothing for the distribution of X and Y as well as the continuization 
constants or bandwidths. In effect, this step consists of selecting these continuization 
constants.

The bandwidth can be thought of as the width of the segmentation of a distribution 
within each segment the data are transformed. The specific transformation is a func-
tion of which kernel density estimator is used (e.g., a Gaussian kernel). Consequently, 
the bandwidth serves as a smoothing parameter with values close to zero yielding very 
little smoothing and increasing values resulting in correspondingly increased degrees of 
smoothing. Thus, the bandwidth affects the shape of the resulting continuous approxi-
mation (Holland & Thayer, 1989). See von Davier et al. (2004), Cid and von Davier 
(2015), Häggstrom and Wiberg (2014), and Lee (2007) for more information.

When a bandwidth is approximately 0.3 the equating functions “agree closely with 
the traditional equating functions” (Holland & Thayer, 1989, p. 11). Large bandwidth 
values (e.g., 5 or 10) yield equating functions that are progressively more linear in form 
and that begin to approximate the traditional linear equating functions (i.e., bandwidths 
that approach infinity) (Holland & Thayer, 1989). More generally speaking, setting the 
bandwidths to be greater than σ10  results in approximating linear equating and setting 
bandwidths to be less than σ0.1  produces equipercentile equating (von Davier et al., 
2004). A form’s bandwidth value can be specified by the researcher or algorithmically 
determined to minimize the mean square error (MSE).

The equating of scores occurs in step 4 and involves computing the KE functions. 
The KE function for equating X to Y on T is given by

	 − −= = =
  1 1ˆ ( ) ( ; , ) ( ( ; ); ) ( ( ))

Y X Y XY Y h h h h je x e x R S G F x R S G F x ,	 (G.34)

where ˆ ( )Ye x  is the KE function for equating X to Y, and 

R  and 


S  are the estimated vec-

tors of score probabilities of jr  and ks  for populations P and Q, respectively. Similarly, 
the KE function for equating Y to X on T is given by

	 − −= = =
  1 1ˆ ( ) ( ; , ) ( ( ; ); ) ( ( ))

X Y X YX X h h k h h ke y e x R S F G y R S F G y .	 (G.35)
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These equations provide the equating functions that can be linear or nonlinear (e.g., the 
equipercentile case) depending on the bandwidths.

In step five the standard error of equating (SEE) and the standard error of equat-
ing difference (SEED) are calculated. The SEE specifies the degree of uncertainty in the 
estimated equating functions, whereas SEED is the difference between the two equating 
function SEEs. The general formula for calculating SEE for equating 


X  to


Y  is

	 σ= =ˆ ˆ( ) ( ) ( ( ))Y Y YSEE x x Var e x 	 (G.36)

and for the equating 

Y  to 


X  SEE is given by

	 σ= =ˆ ˆ( ) ( ) ( ( ))X X XSEE y y Var e y .	 (G.37)

The calculations for SEE differ for PSE and CE. For example, utilizing CE one has  

′= +2 2
( )( ) [ ( ( ))] [ ( ( )) ( )]Y CE Y A Y A ASEE x SEE e x e e x SEE x . For both PSE and CE it is assumed 

that the bandwidths, Xh  and Yh , are fixed values and not functions of the estimated score 
probabilities 


R  and 


S  (von Davier et al., 2004). SEE calculations are most appropriate 

for large sample sizes and may not be valid with small samples (von Davier et al., 2004).
Research has shown several factors may affect the accuracy of KE equating. For 

example, the fit of kernel smoothing has been found to improve with increased sam-
ple sizes (Lee, 2007). This research also suggests that kernel smoothing improves with 
increased test length. Research comparing KE to linear, equipercentile, and TCC equat-
ing methods shows that KE performs well (e.g., de Ayala, Smith, & Norman Dvorak, 
2018; Mao et al., 2006; von Davier et al., 2006) and to TCC equating. Software for per-
forming kernel equating include KE (von Davier, Holland, & Thayer, 2004) or the R 
packages kequate (Andersson, Bränberg, & Wiberg, 2013, 2020) and SNSequate.

With kequate there are three phases. In the first phase, the package’s kefreq 
function is used to create the frequency distributions. The second phase involves fit-
ting a series of generalized linear models via the glm function. These models vary in 
complexity from nonadditive to additive models as well as involving varying powers. 
For instance, one model might include the terms X, X2, X3, X4, A, A2, A3, and XA where X 
represents the test form, A represents the anchor test, and XA is a first-order interaction. 
From these models the best model is selected for equating on the basis of, for example, 
the smallest AIC or BIC. After which the model is applied to each data set for the equat-
ing of Form Y scores to Form X scores using the kequate function (phase 3).

CORRESPONDENCE BETWEEN THE RASCH MODEL 
AND A LOGLINEAR MODEL

In Chapter 2 we introduced our math data set (see Table 2.1) as patterns with the cor-
responding frequencies of occurrence. Another way to summarize our responses is as a 
contingency table. For example, Table G.11 presents the crossing of all five items and X. 
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TABLE G.11.  Contingency Table for Math Data

I1 I2 I3 I4 I5

X

0 1 2 3 4 5

0 0 0 0 0 691 0 0 0 0 0

  1 0 184 0 0 0 0

  1 0 0 158 0 0 0 0

  1 0 0 41 0 0 0

  1 0 0 0 235 0 0 0 0

  1 0 0 87 0 0 0

  1 0 0 0 65 0 0 0

  1 0 0 0 15 0 0

  1 0 0 0 0 242 0 0 0 0

  1 0 0 79 0 0 0

  1 0 0 0 92 0 0 0

  1 0 0 0 28 0 0

  1 0 0 0 0 134 0 0 0

  1 0 0 0 52 0 0

  1 0 0 0 0 63 0 0

  1 0 0 0 0 40 0

1 0 0 0 0 0 2280 0 0 0 0

  1 0 0 571 0 0 0

  1 0 0 0 462 0 0 0

  1 0 0 0 166 0 0

  1 0 0 0 0 1053 0 0 0

  1 0 0 0 412 0 0

  1 0 0 0 0 370 0 0

  1 0 0 0 0 187 0

  1 0 0 0 0 0 1685 0 0 0

  1 0 0 0 626 0 0

  1 0 0 0 0 702 0 0

  1 0 0 0 0 500 0

  1 0 0 0 0 0 1682 0 0

  1 0 0 0 0 1219 0

  1 0 0 0 0 0 2095 0

  1 0 0 0 0 0 3385
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As can be seen, our zero variance response vectors (X = 0, X = 5) consist simply of zero 
frequencies except for the intersection of the cells corresponding to a pattern of 00000 
or of 11111. Of these cases, we have 691 individuals with X = 0 and 3385 respondents 
with X = 5 for a total of 4076 cases with uninformative response vectors vis à vis esti-
mating θ  via MLE. Consequently, there are 15,525 remaining cases that have useful 
response vectors.

We can fit a generalized linear model to these data using a log link function with a 
categorical systematic component and assuming a Poisson distribution for the random 
component (i.e., the distribution of responses); see Agresti (1990). In this context, our 
linear model (i.e., linear in parameters) using a log link is called a loglinear model.8 As 
such and generally speaking, our table consists of three factors: responses, items, and 
scores. We have L items (j = 1, 2, …, L) each of which has two responses (k = 1, 2; jm
=2). As mentioned in Chapter 2, with the Rasch model we have L – 1 unique ability 
estimates. Because all individuals obtaining the same X obtain the same θ̂  we can col-
lect these respondents into score groups. Consequently, when using MLE for person 
estimation we have at most L – 1 score groups using. However, because it is possible that 
we may not observe each X from 1 to L- 1 let o represent the number of uninformative 
response vectors (i.e., o ≥ [(L + 1) – (L – 1)]). Thus, our data consist of (L + 1 – o) score 
groups (i = 1, 2, …, (L + 1 – o)); for Table G.11 o = 2. Let a table’s observed frequencies be 

ijkf  and the corresponding expected frequencies by φijk  with

  φijk  = ππ π π π π π π* * * **response scoregrp response item response scoregrp item responsescoregrp scoregrp itemitem
i j k ij ik jk ijk   (G.38)

or alternatively,

	 φln( )ijk  = λ λ λ λ+ + + +.. responsescoregrp item
i j k  

	                   λ λ λ+ + +* ** scoregrp response item responsescoregrp item
ij ik jk 	 (G.39) 

	 λ * *scoregrp item response
ijk , 	

where λ ..  is the overall effect (constant); λ scoregrp
i , λ item

j , λresponse
k , are the main effects of  

the score group, item, and response, respectively; λ *scoregrp item
ij , λ *scoregrp response

ik , λ *item response
jk , 

are the first-order interaction effects, and λ * *scoregrp item response
ijk  is the second-order interac-

tion of score group, item and response. Because Equation G.39 is the saturated model it 
contains all main and interaction effects and will yield φ =s sijk ijkf . Equation G.39 may 
also be written as

	 µln( )ijk  = λ λ λ λ+ + + +.. responsescoregrp item
i j k          	           

	 λ λ λ+ + +* ** scoregrp response item responsescoregrp item
ij ik jk 	 (G.40) 

	 λ * *scoregrp item response
ijk             	         

to reflect our expected cell counts and a GLM notation.
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Following Mellenbergh and Vijn (1981) we have as our logit for a response of 1
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,	 (G.41)

where µ1 0ln( )j  = µ− 1 11 ln( )j . Applying the quotient rule for logarithms we have

	
 
 

−  
ln

1
ij

ij

p

p  = – µ1 1ln( )j  – µ1 0ln( )j .	 (G.42)

By appropriate substitution of Equation G.40 into G.42 we obtain
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 
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ln
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p

p
 =[ λ λ λ λ+ + + +..

1
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1 1 1
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ij i j ij ]	
(G.43)

 

	 – [ λ λ λ λ+ + + +..
0
responsescoregrp item

i j            	             

	        λ λ λ λ+ + +* * * **
0 0 0
scoregrp response item response scoregrp item responsescoregrp item

ij i j ij ],	

where for the minuend k = 1, for the subtrahend k = 0, and with the constraints
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ijk ijk ijk
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 = 0.

After cancellation of like terms; substitution of the equivalencies 
λ λ= −1 0

response response , λ λ= −* *
1 0
scoregrp response scoregrp response , λ λ= −* *

1 0
item response item response , 

λ λ= −* * * *
1 0
scoregrp item response scoregrp item response ; and factoring we obtain the saturated model

  
 
 

−  
ln

1
ij

ij

p

p
 = λ λ λ λ+ + +* * * *

1 1 1 12 2 2 2response scoregrp response item response scoregrp item response
i j ij .	 (G.44)

The terms λ *
1

item response
j , λ *

1
scoregrp response
i

, and λ * *
1

scoregrp item response
ij  reflect our item and person 

effects as well as their interaction effect on the logit, respectively. As mentioned above, 
the saturated model fits the data perfectly. Thus, if we assume the highest-order interac-
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tion equals 0 we obtain a more parsimonious model that may be nonsignificantly differ-
ent from the saturated model

	
 
 

−  
ln

1
ij

ij

p

p
 = λ λ λ+ +* *

1 1 12 2 2response scoregrp response item response
i j .	 (G.45)

By letting our person (i.e., score group) and item effects be represented as θ~
i  = 

λ *
12 scoregrp response

i , δ ~E
j  = λ *

12 item response
j , and noting that λ12 response  is constant (C) we have
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with constraints δ
=
∑
L
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Equation G.46 is essentially equivalent to Equation G.13 (δ j = δ− E
j ) with C  

“absorbed” into the parameters (Mellenbergh & Vijn, 1981). As such, from the perspec-
tive of estimating the parameters the models are equivalent. To demonstrate this point 
we fit a loglinear model to our math contingency table (Table G.11) using the R glm 
function.9 Table G.12 contains our R session.

After reading our data we calculate the observed score (mathdat$X = 
rowSums(mathdat)) and obtain its frequency distribution using the table func-
tion. We have 691 cases with X = 0 and 3385 individuals with X = 5. Because we com-
pare our estimates to those from those using JMLE we remove these 4076 zero vari-
ance response vectors from our data frame using the subset function. Our new data 
frame (mathdatR) has 15,525 cases (nrow(mathdatR)). Using our five items and X 
we create our contingency table (cntngncytblNoZeroVar) for analysis (with(…, 
table(i1,i2,i3,i4,i5,X))). Comparing our contingency table (ftable(…)) with 
the one presented in Table G.11 shows that the only difference is the elimination of the 
zero variance response vectors. Our last preparatory step is to convert our contingency 
table to a data frame (cntngncytblNoZeroVar _ df=as.data.frame(…)). As a 
result, a new variable containing the cell frequencies (Freq) is created. It is this variable 
that we use in our modeling.

We pass our table data frame, specifying a model containing each of our items and X as 
well as the Poisson distribution (llNoZeroVar = glm(Freq ~ i1+i2+i3+i4+i5+X, 
…, family = poisson)). We obtain convergence in 7 iterations. Our estimates are 
δ ~

1
ˆ E  = 2.22436, δ ~

2
ˆ E  = 0.38511, δ ~

3
ˆ E  = –0.01378, δ ~

4
ˆ E  = –0.74904, and δ ~

5
ˆ E  = –0.98964. 

By default the glm function models the 1 value. Consequently, to convert our estimates 
from the easiness scale we multiply them by –1 (i.e., δ j  = δ− E

j  ). Therefore, we convert 
these easiness estimates to the difficulty metric. To compare our estimates to those of 
BIGSTEPS (Table 3.4, JMLE, N = 15,525) we apply the mean-sigma method (see Chap-
ter 11) to link this metric to that of BIGSTEPS’s. Our transformed estimates are δ ~*

1
ˆ = 

–2.22723, δ ~*
2

ˆ = –0.23364, δ ~*
3

ˆ = 0.19872, δ ~*
4

ˆ = 0.99568, and δ ~*
5

ˆ = 1.25647. Comparing 
the two sets of estimates shows a mean absolute deviation of 0.00765 with a correlation 
of 0.99992; the corresponding plot shows the points falling essentially on a straight line.
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TABLE G.12. glm Session for the Loglinear Calibration 
of the Mathematics Data
> sessionInfo()
    R version 3.6.0 (2019-04-26) 
> mathdat=read.table("math.dat",col.names=c(paste0("i",1:5)))

> mathdat$X=rowSums(mathdat)                     # calculate observed (summed) score

> table(mathdat$X)
       0    1    2    3    4    5 
     691 3099 4269 4116 4041 3385 

> mathdatR=subset(mathdat,  (X > 0) & (X < 5))   # eliminate X=0 & X=5 cases
> nrow(mathdatR)                                 # number of cases
    [1] 15525

> table(mathdatR$X)
       1    2    3    4 
    3099 4269 4116 4041 

> cntngncytblNoZeroVar=with(mathdatR,table(i1,i2,i3,i4,i5,X))

> dim(cntngncytblNoZeroVar)                     # contingency table’s dimensions 2x2x2x2x2x4
    [1] 2 2 2 2 2 4

> ftable(cntngncytblNoZeroVar)
                   X    1    2    3    4
    i1 i2 i3 i4 i5                      
    0  0  0  0  0       0    0    0    0
                1     184    0    0    0
             1  0     158    0    0    0
                1       0   41    0    0
          1  0  0     235    0    0    0
                1       0   87    0    0
             1  0       0   65    0    0
                1       0    0   15    0
       1  0  0  0     242    0    0    0
                1       0   79    0    0
             1  0       0   92    0    0
                1       0    0   28    0
          1  0  0       0  134    0    0
                1       0    0   52    0
             1  0       0    0   63    0
                1       0    0    0   40
    1  0  0  0  0    2280    0    0    0
                1       0  571    0    0
             1  0       0  462    0    0
                1       0    0  166    0
          1  0  0       0 1053    0    0
                1       0    0  412    0
             1  0       0    0  370    0
                1       0    0    0  187
       1  0  0  0       0 1685    0    0
                1       0    0  626    0
             1  0       0    0  702    0
                1       0    0    0  500
          1  0  0       0    0 1682    0
                1       0    0    0 1219
             1  0       0    0    0 2095
                1       0    0    0    0

(continued)
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TABLE G.12.  (continued)

> cntngncytblNoZeroVar_df=as.data.frame(cntngncytblNoZeroVar)

> # note the 0s & 1s reflect category labels NOT the responses

> head(cntngncytblNoZeroVar_df,5)
  i1 i2 i3 i4 i5 X Freq
1  0  0  0  0  0 1    0
2  1  0  0  0  0 1 2280
3  0  1  0  0  0 1  242
4  1  1  0  0  0 1    0
5  0  0  1  0  0 1  235

> tail(cntngncytblNoZeroVar_df,5)
    i1 i2 i3 i4 i5 X Freq
124  1  1  0  1  1 4  500
125  0  0  1  1  1 4    0
126  1  0  1  1  1 4  187
127  0  1  1  1  1 4   40
128  1  1  1  1  1 4    0

> # glm models ref of 1 – this indicated by the second digit on the item label  
             in the
> # Coefficients table.  For example, i11 means variable i1 using a reference  
             value of 1

> llNoZeroVar  = glm(Freq ~ i1+i2+i3+i4+i5+X, data = cntngncytblNoZeroVar, family =  
             poisson)

> summary(llNoZeroVar )
    Call:
    glm(formula = Freq ~ i1 + i2 + i3 + i4 + i5 + X, family = poisson, 
        data = cntngncytblNoZeroVar)

    Deviance Residuals: 
        Min       1Q   Median       3Q      Max  
    -33.570  -16.358   -7.471   -3.604   74.378  

    Coefficients:
                Estimate Std.  Error z value Pr(>|z|)    
    (Intercept)  3.41816    0.03363 101.642   <2e-16 ***
    i11          2.22436    0.02705  82.246   <2e-16 ***
    i21          0.38511    0.01635  23.554   <2e-16 ***
    i31         -0.01378    0.01605  -0.859     0.39    
    i41         -0.74904    0.01719 -43.573   <2e-16 ***
    i51         -0.98964    0.01806 -54.807   <2e-16 ***
    X2           0.32030    0.02360  13.572   <2e-16 ***
    X3           0.28380    0.02378  11.933   <2e-16 ***
    X4           0.26541    0.02388  11.116   <2e-16 ***
    ---
    Signif.  codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

    (Dispersion parameter for poisson family taken to be 1)

        Null deviance: 64405  on 127  degrees of freedom
    Residual deviance: 46602  on 119  degrees of freedom
    AIC: 46839

    Number of Fisher Scoring iterations: 7

> llNoZeroVar$converged                                      # convergence achieved
    [1] TRUE
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R INTRODUCTION

Downloading R

Go to: https://www.r-project.org/

Click on download R

Pick your mirror site (you’ll have to scroll to get to the USA section):

. 

. 

.
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Pick your platform:
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This is what a Windows site looks like:

Clicking on install R for the first time produces:

Clicking on the icon that appears on the desktop after the download will install the 
package.

One can perform analyses and/or data manipulations from within the R environ-
ment or from a shell such as RStudio. RStudio has editing and management features 
that are either not available or more convenient to use than those in R. Using RStudio is 
recommended.

•	 RStudio can be downloaded from https://www.rstudio.com/ for free.

•	 Reference Card: https://cran.r-project.org/doc/contrib/Short-refcard.pdf

•	 Codeschool (interactive): http://tryr.codeschool.com/levels/1/challenges/2

•	 RStudio Introduction: https://www.youtube.com/watch?v=jPk6-3prknk

•	 Getting started with R and RStudio: https://www.youtube.com/
watch?v=lVKMsaWju8w
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Installing Packages in R

In addition to the base R routines one will install additional packages that contain rou-
tines (i.e., functions) to accomplish a specific analysis or task. If you are using RStudio 
one simply selects Install Packages… (found in the Tools menu) and types the 
package name in the Packages (separate multiple with space or comma) 
field. Below we outline the steps within R.

As an example to install the mirt package we would use:

> install.packages(“mirt”)

You will be asked to select a mirror site from which to download the package. Here’s part 
of the process:

(Two useful plotting packages are ggplot2 and lattice. Each of these would have to 
be installed as done with mirt.)

The mirt package now exists on the harddrive. To use it we need to tell R to load 
it into our session using the library command (quotes are not needed in the current 
R version):
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An alternative to typing a command to install the mirt package – 
using the GUI  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Loading the mirt package through the GUI: 
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Note 1: Spelling of each command is specific.

For example, > install.package(“Hmisc”)

Error: could not find function “install.package”

This error was caused because the command was misspelled (i.e., ‘package’ 
instead of ‘packages’).

Note 2: The case used with each command is important

For example, > install.package(“hmisc”)

Warning messages:

1: package ‘hmisc’ is not available (for R version 3.3.0)

2: Perhaps you meant ‘Hmisc’ ?

This error was caused because the “h” was not capitalized.

For example, > Install.packages(“Hmisc”)

Error: could not find function “Install.packages”

This error was caused because the “I” was capitalized and should not have been.

Note 3: One uses double quotes with the install.packages command; the library 
command will work with or without double quotes

Note 4: Installing the latticeExtra package will be necessary for some of the plot-
ting routines in mirt.

Note 5: A useful Reference “card” containing R commands is found at: https://cran.r-
project.org/doc/contrib/Short-refcard.pdf
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Using R

Upon starting R a workspace is created that, by default, can be saved with the .RData 
extension. To see what exists in the workspace use the ls() function. To quit R use the 
File menu, type q(), or simply close the window. Note 1: Commands are typed after 
“>” and R commands are case sensitive.

Change the default directory to be the folder containing your data file.

(In RStudio select the “Set Working Directory\Choose Directory…” submenu 
item from the Session menu.)

Alternatively, one can use the setwd function. Because in R a backward slash (i.e., “\”) 
is the escape character in characters strings one needs to use a double backward slash in 
path names or a forward slash (i.e., “/”). For example, setwd(“c:\\folder _ name1\\
folder _ name2”) or setwd(“c:/folder _ name1/folder _ name2”).

You can use the getwd() function to determine the working directory.
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Here’s part of the beginning and end of our data file, math.dat, to show the data’s 
format. As can be see the data are separated by a space (i.e., space delimited) and we 
have variable names on first line.

i1 i2 i3 i4 i5
 1  1  0  0  0
 1  1  1  0  0
:
 1  1  1  0  0
 1  0  0  0  0

To read my data set, math.dat, we use the read.table command with the header 
subcommand to read the variable names that appear on the first line of the file (i.e., 
mathdata = read.table(“math.dat”, header=TRUE)); if our data were tab 
or comma delimited we would use the field separator option (e.g., for tab delimited 
read.table(“math.dat”, header=T,sep=”\t”), for comma delimited read.
table(“math.dat”, header=T, sep=”,”) or read.csv; in Europe: read.
csv2). We then display the first five and last three cases using the head and tail 
commands, respectively, to verify the data were read in correctly.

Note: The file name in the read.table command is not case sensitive. For exam-
ple, MATH.DAT, math.dat, MatH.Dat, etc.) are considered the same. However, if we had 
typed “MATHdata” in the head command then R would tell me that the data frame, 
MATHdata, was not found because in the read.table command the data frame was 
called mathdata.
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Updating R

New versions of R are periodically released. Potentially a new package may not execute 
with an older version of R (i.e., the package may not be backward compatible). The most 
convenient way to address these releases is to use updateR(). To use updateR() one 
first needs to install it:

> install.packages(“installr”)

To use updateR() one loads the library:

> library(installr)

To update/upgrade your version you can use the command:

> installr()

Or you can use the GUI interface. Select Update R from the installr menu:

Update R will tell you the most current version of R and the version of R you are run-
ning. Alternatively, to determine your version of R:

> R.Version

This process will also allow you to update any packages you have installed.
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NOTES

1.  A tetrachoric correlation coefficient specifies the association between two variables that 
are continuous and assumed to be normally distributed, but that are artificially dichotomized. 
These variables, X and Y, may be the dichotomization of a manifest variable(s) in a sample (e.g., 
X = “males 30 years and older” vs. “males below 30” and Y = “females 30 years and older” vs. 
“females below 30”) or may be a theoretical dichotomization as discussed in Appendix C “Con-
ceptual Development of the Normal Ogive Model” (i.e., the responses of 0 and 1 are assumed to 
arise from dichotomizing two continuous normally distributed latent variables). Consequently, 
the coefficient is an estimate of the linear relationship between the two continuous variables if 
the correlation was calculated using the two continuous variables. Cross-classifying the two 
dichotomous variables creates a 2 × 2 contingency table. This table is graphically represented 
in Figure G.7 with the variables’ normal distributions on the table’s margins. With respect to 
the variables’ normal distributions, the symbol z is the standard score corresponding to the p 
proportion of 1s for variable Y (i.e., p is the marginal proportion of 1s and (1 – p) is the marginal 
proportion of 0s for variable Y). The height of the unit normal curve at z is denoted by Y. In an 
analogous fashion, and with respect to the variable X, ′z  delimits the ′p  proportion of 1s and 
the ordinate value at ′z  is symbolized as ′Y . The cross-classification of the 1s and 0s for vari-
ables X and Y leads to a fourfold table with the cells’ frequencies labeled by the letters A, B, C, 
and D.

FIGURE G.7.  Relationship between two continuous normally distributed variables and their 
dichotomization.
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One equation for calculating the tetrachoric correlation, Tr , involves the power series (Guil-
ford & Fruchter, 1978)

	 Tr  = 
 − − −′ ′ + + + ≅     ′ 


2 2

2 3
2
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zz z z ad bc

r r r
YY

,	 (G.47)

where N is the number of cases and all other terms are defined above. Equation G.47 shows that 

Tr  contains the unknowns z and ′z  as well as Y and ′Y . Therefore, obtaining Tr  is a complex 
process and several approaches have been developed. For example, Divgi (1979) and Bonett and 
Price (2005) contain two different methods for estimating the tetrachoric correlation coefficient.

There are several situations that may lead to problems in the accuracy of the Tr  estimate. 
For instance, if the dichotomized variable(s) has extreme proportions (e.g., p and/or ′p  is 0.90), 
guessing is present, and/or the normality assumption is not tenable, then one obtains a biased 
estimate of the true population relationship. As a result, the magnitude of the observed coef-
ficients may be inappropriately large and outside the range –1 to 1. In addition, there is an 
increased chance of observing non-Gramian matrices (i.e., a matrix with negative eigenvalue[s]) 
when factor analyzing tetrachorics.

As previously mentioned, and as is the case with the analysis of phi coefficients, it is possible 
to observe difficulty factors with the factor analysis of a tetrachoric correlation matrix (Gourlay, 
1951). In the situation where items may be correctly answered on the basis of guessing, then the 
tetrachoric correlation is adversely affected. However, Carroll (1945) provides an approach for 
correcting tetrachoric correlations for chance success; see Reckase (1981; cited in Green et al., 
1984) concerning problems with overcorrecting tetrachoric correlations. An approach for testing 
assumptions for tetrachoric correlations is presented by Muthén and Hofacker (1988). Guilford 
and Fruchter (1978) suggest that “for estimating the degree [italics added] of correlation . . . it is 
recommended that N be at least 200, and preferably 300” (p. 315), as well as to avoid calculating 

Tr  when there is a zero frequency in one cell.

2.  A monotonic transformation preserves the inequalities of the untransformed values. 
That is, a transformation, say �( )f , is monotonic if for <0 1x x  one has that 0( )f x  < 1( )f x . The 
graph of ()f  as a function of x would appear as a line that either increases or plateaus, but never 
decreases (i.e., a monotonically increasing function). Conversely, �( )f  is a monotonic transfor-
mation if for <0 1x x , then 0( )f x  > 1( )f x . In this latter case the graph of �( )f  as a function of 
x would appear as a line that either decreases or plateaus, but never increases (i.e., a monotoni-
cally decreasing function). Examples of monotonic transformation are *x  = 1 / x , *x  = xe , *x  
= ln( )x , and sometimes =* 2x x ; in the case of 2x  one needs the restrictions of either x ≥ 0 or 
x ≤ 0.

3.  The probability of a response of 0 for the 1PL model is

	 θ α δ=( 0 | , , )j jp x  = 
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Sometimes the 1PL model’s exponent is written to contain the response, jx . That is,

	 θ α δ=( 1 | , , )j jp x  = 

α θ δ
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j j
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x
e

e
.	 (G.49)

Equation G.49 can be used to calculate the probability of a response of 0 and a response of 1.
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4.  Although the strata are ordered in terms of their average item location, this does not 
mean that the probability of a response of 1 will always have a direct relationship with the 
strata’s order. In the context of proficiency assessment this ordering would be with respect to the 
stratum’s average difficulty. Whenever we use a model that allows for item discrimination and/
or the IRF’s lower asymptote to vary, then it is possible to have crossing IRFs. When IRFs cross, 
then some individuals have a higher probability of a response of 1 on a more difficult item than 
on an easier item. For example, Figure G.8 contains the IRFs for two items that differ in their 
discriminations and difficulties. Specifically, item 1 has an α1  = 2 and δ1 = 0.5, whereas item 2 
has an α2 = 0.8 with δ2  = 1.5. As can be seen, an individual with a θ  above the IRFs’ intersection 
point (e.g., θ  = 1.0) has a higher probability of correctly answering the easier item 1 than the 
more difficult (in terms of δ ) item 2. This result is consistent with ordering the items according 
to difficulty (i.e., δ2  > δ1 ). However, for θs  below the IRFs’ intersection point (e.g., at θ  = –1.0) 
the probability of a correct response on the more difficult item 2 is greater than on the easier item 
1. Stated another way, for low-proficiency people item 2 (the “hard” item) is actually “easier” than 
item 1 because their probability of a correct response is higher for item 2 than it is for item 1. This 
item level observation may be extended to strata ordered by average item location. Specifically, 
each of our respondents may not have a probability of a response of 1 that decreases as the aver-
age stratum difficulty increases.

5.  The different location estimates for the same item across groups is a reflection of the 
indeterminacy of metric issue discussed above. Recall each metric is defined with respect to the 
sample that was used. Consequently, the metric for the high group is not the same as for the low 
group. The difference in metrics is reflected in the points falling above the identity line (Figure 
G.5); the mean location for the high and low groups are –1.316 and 2.882, respectively. Ignoring 
this issue leads one to interpret the estimated item location of –1.369 as an “easy” item and the 
item estimated to be at 2.840 as a “difficult” item. However, once the low-group metric and the 

FIGURE G.8. I RFs for two items with different α sj .
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high-group metric are aligned with one another the interpretation of whether the item is “easy” 
or “difficult” is consistent across groups. One way of thinking about this is to consider the low-
group metric to be analogous to the Celsius scale and the high-group metric to be analogous to 
the Fahrenheit scale. Whether a temperature of 30° is interpreted to be “hot” or “cold” depends 
on whether it is on the Celsius or Fahrenheit scale. However, once the two scales are aligned, 
the interpretation of 30° is the same regardless of which temperature scale one is referencing. 
This linking of the Celsius and Fahrenheit scales is accomplished using the (perfect) linear rela-
tionship that exists between the two scales. The linking of the different metrics is discussed in 
Chapter 11.

6.  The best way to examine this question requires knowledge of the examinees’ true loca-
tions, θs . In this way the quality of the estimated person locations may be directly assessed by 
comparing the estimates with their true values. An experiment in which the researcher knows 
parameter values (e.g., examinees’ true locations) and then uses a computer to model the behav-
ior of the construct of interest is known as a computer simulation study. If a simulation study 
uses a model (e.g., a regression model, the Rasch model) to generate the (simulated) data, then 
the technique is known as a Monte Carlo simulation study. Therefore, to address the question, 
“How do the characteristics of the instrument affect the person location estimates?” we conduct 
a Monte Carlo study. For this simulation 40 z-scores are randomly sampled from a unit normal 
distribution; this may be accomplished by using a normal distribution random number generator 
from a statistical package or spreadsheet program. These z-scores are considered to be the items’ 
location parameters, δs . In addition, 1000 z-scores are randomly sampled from a unit normal 
distribution. These z-scores serve as the person location parameters, θs ; these pseudo “people” 
are sometimes referred to as simulees.

The response data for each simulee is obtained in two phases. In the first phase the simu-
lee’s probability of a response of 1 to item j is calculated according to a model (e.g., the Rasch 
model) using the appropriate parameters (e.g., δ j  and the simulee’s θ ). In the second phase 
this probability is compared to a uniform random number [0, 1]. If the random number is less 
than or equal to the probability of the response 1, then the simulee’s response to item j is coded 
as 1, otherwise it is coded as 0. These phases are repeated to obtain the simulee’s responses to 
the remaining items on the instrument. The entire process is repeated for each of the remaining 
simulees. Harwell, Stone, Hsu, and Kirisci (1996) and Paxton, Curran, Bollen, Kirby, and Chen 
(2001) contain more information on conducting Monte Carlo studies.

7.  Divgi (1986) argues that because of maximum likelihood bias in person locations one 
cannot have instrument-free estimation whenever finite instruments differ in their item loca-
tions. Moreover, it is not clear that we can always have a measure of a person’s location that is 
unaffected by the items on an instrument. For instance, consider an item that would be consid-
ered to be at the synthesis level of Bloom’s taxonomy of educational objectives for the cognitive 
domain. When an examinee encounters such an item it is possible that the process of synthesiz-
ing the relevant information leads to the person learning something that previously they did 
not know. As such, the examinee’s location shifts from where it would have been if they had not 
encountered the item. Therefore, we would have one ( θ̂ ) if the person is administered the syn-
thesis item and a different ( θ̂ ) if they had been given a different (e.g., a knowledge level) item, 
albeit in the synthesis item’s content domain. In short, whether the item is at the synthesis or 
knowledge level affects our person location and its estimate. Because the item-person interaction 
is not immutable the measurement of individuals is not always independent of the administered 
items. Therefore, item-invariant measurement must be interpreted to refer to the result of the 
person–item interaction and not that the item does not affect the person. Moreover, although 
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we may accumulate invariance evidence across different groupings (e.g., male versus females, 
high versus low ability) this does not mean that we would necessarily obtain invariance evi-
dence across other possible groupings, languages, and/or in other cultures. As such, because our 
invariance evidence is conditional on the specific groups, language, and culture that are used we 
suggest the use of the term conditional invariance (e.g., conditional person-parameter invariance 
and conditional item-parameter invariance). The best that we can do is accumulate evidence that 
supports our contention of invariant measurement.

8.  Goodman (1978) and other use the term log-linear model.

9.  Our corresponding SPSS syntax is given below. We first compute our observed score X 
followed by eliminating our zero variance response vectors (X = 0 and X = 5) before calling GEN-
LOG. Consequently, our call to GENLOG involves a contingency table with 15,525 examinees. 
Because by default SPSS models 0 our estimates are on the difficulty scale.

COMMENT compute observed score.
COMPUTE X=i1+i2+i3+i4+i5.
EXECUTE.

COMMENT select cases non zero variance response vectors.
USE ALL.
COMPUTE filter_$=(X>0 and X<5).
VARIABLE LABELS filter_$ ‘X>0 and X<5 (FILTER)’.
VALUE LABELS filter_$ 0 ‘Not Selected’ 1 ‘Selected’.
FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.

COMMENT loglinear analysis.
GENLOG i1 i2 i3 i4 i5 X
/MODEL=POISSON
/PRINT=FREQ RESID ADJRESID ZRESID DEV ESTIM CORR COV ITERATION
/PLOT=RESID(ADJRESID) NORMPROB(ADJRESID)
/CRITERIA=CIN(95) ITERATE(20) CONVERGE(0.001) DELTA(.5)
/DESIGN i1 i2 i3 i4 i5 X.

Our estimates are δ ~
1

ˆ  = –2.224, δ ~
2

ˆ  = –0.385, δ ~
3

ˆ  = 0.014, δ ~
4

ˆ  = 0.749, and δ ~
5

ˆ  = 0.990. Apply-
ing the mean-sigma method (see Chapter 11) to link this metric to that of BIGSTEPS’s (Table 3.4, 
JMLE; N = 15,525) we obtain δ ~*

1
ˆ  = –2.223, δ ~*

2
ˆ  = –0.230, δ ~*

3
ˆ  = 0.203, δ ~*

4
ˆ  = 1.000, and δ ~*

5
ˆ  = 

1.260. Comparing the two sets of estimates shows a mean absolute deviation of 0.013 with a cor-
relation of 0.99992; the corresponding plot shows the points falling essentially on a straight line. 
(Because the BIGSTEPS estimates are presented to two decimal places the accuracy of the mean 
absolute deviation is adversely affected.)
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