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Measurement Invariance Testing

This chapter introduces a Bayesian approach to assessing measurement invariance
(MI). The Bayesian approximate MI approach can be used to examine group differ-
ences (or differences across time, see Chapter 8). This process does not assume ex-
act equivalence across groups on a given parameter, as does the traditional ML-based
approach. Instead, it implements a difference prior, which is centered at zero and
has a narrowed variance hyperparameter. This near-zero (or approximate-zero) prior
allows for flexibility and “wiggle” room for parameter differences across groups. The
approach can be easily scaled to include multiple groups, and it can be implemented
under relatively smaller sample sizes compared to traditional approaches for MI testing.
In addition, Bayesian approximate MI may represent substantive interpretations closer t
othe original intention than traditional approaches since it can avoid erroneous deletion
of items from a scale or unnecessary freeing of constraints in the model. An example
comparing the traditional and Bayesian approximate MI approaches is included.

5.1 A Brief Introduction to MI in SEM

A natural extension to the multiple-group approach in Chapter 4 is to ex-
amine MI. MI is typically of interest if the measurement model is going
to be used to compare across groups (or time, as discussed in Chapter 8).
If latent factor scores are to be compared, then the measurement model
should hold as equivalent across groups. This equivalence includes all el-
ements of the measurement model such as the factor loadings, intercepts,
and factor covariances. If equivalence holds, then this indicates that rela-
tionships between the observed item indicators and the latent factors are
not conditional on group membership. In other words, the measurement
model holds across groups–thus, the groups are measurement invariant.

The current chapter highlights MI through a Bayesian perspective, and
it is organized as follows. The remainder of this section covers traditional
steps for assessing MI. The Bayesian approximate MI process is introduced
(Section 5.2), which is followed by the basic model used here (Section
5.3), and the Bayesian form of the model (Section 5.4). An example of
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170 Bayesian Structural Equation Modeling

implementation is presented (Section 5.5), as well as a guide for writing
up results (Section 5.6). Finally, the chapter concludes with a summary,
major take-home points, a map of all notation used throughout the chapter,
an annotated bibliography for select resources pertinent to this topic, and
sample Mplus and R code for examples described in this chapter (Section
5.7).

5.1.1 Stages of Traditional MI Testing

This section briefly describes the traditional stages for testing MI in a
multiple-group model. These stages are then implemented in an example
and compared to the Bayesian approximate MI approach. For a full de-
scription of traditional measurement invariance, please see Millsap (2011).

The traditional approach to MI uses ML estimation and some index of
model modification to aid in freeing parameters exhibiting non-invariance.
There are two main approaches that can be implemented for assessing MI.

The first approach starts with a fully invariant measurement model and
frees the invariance one item (or parameter) at a time. A likelihood-ratio
chi-square test of invariance (or an index like the comparative fit index) is
typically used in an iterative fashion (one restriction freed, the test of invari-
ance is examined, then repeat the process). The second approach employs
an opposite strategy in that the process begins with a fully non-invariant
measurement model. Then one item (or parameter) is held invariant, the
likelihood-ratio chi-square test of invariance is implemented, and then the
process continues until the entire model is examined. Regardless of the
approach taken, this traditional view of invariance testing works best with
only a few groups (or time points, as I will discuss in Chapter 8). The next
sections describe some of the main classifications for invariance.

Configural Invariance

Testing for configural invariance is typically the first step in the invariance
testing process. This step ensures that the same basic pattern of loadings
(free and fixed) exists across groups. If, for example, two groups have
different CFA models (e.g., Group 1 is best represented by one factor, and
Group 2 is best represented by two factors), then configural invariance
does not hold. If this step does not hold, then this indicates the groups are
associated with either different latent factors, or these latent factors take on
different meanings across the groups. In order for configural invariance
to hold, the groups must be associated with the same underlying latent
factors.
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Measurement Invariance Testing 171

Metric Invariance

If configural invariance holds, and the same basic latent factors exist across
groups, then the next step can be examined in the MI process. The second
step for assessing MI is to test for metric (or weak) invariance. This step
entails examining the factor loadings by setting them to be invariant across
groups. If metric invariance does not hold, then it implies that the strength
of the relationship between the observed item indicator and the latent
factor is not comparable across groups. If full metric invariance does not
hold, then partial metric invariance can be tested. Within partial metric
invariance, some factor loadings are allowed to be freely estimated (i.e.,
allowed to differ across groups). This is an iterative process when testing
for MI in this step since it is typically done on a loading-by-loading basis
(i.e., freeing one loading at a time and assessing for fit).

Scalar Invariance

The next step in the invariance testing process is to assess for scalar (strong)
invariance. In this step, intercepts (or thresholds) are constrained across
groups. If intercepts are found to be invariant, then it means that if two
people (one from each of the two groups) have the same latent factor score,
they would also have the same responses for the observed item indicators.
After reaching scalar invariance, latent factor differences can be attributed
to differences in observed item responses across the groups. In other words,
latent factor means can be compared across groups. If full scalar invariance
is not met, then partial scalar invariance can be examined by freeing certain
intercepts in the model to differ across groups.

Unique Variances Invariance

The next step in the process is to test for unique variances (or strict) invari-
ance. This step consists of constraining the error variances tied to observed
item indicators to be equal across groups. This step examines whether vari-
ability associated with the observed item indicators is equal across groups
after accounting for the latent factor. If full invariance is not achieved at this
step, then partial unique variances invariance can be examined by freeing
some error variances across groups.

Factor Variance Invariance

The next step of invariance testing that can be implemented is to assess
whether latent factor variances are equal across groups. If invariance is



Cop
yri

gh
t ©

 20
21

 The
 G

uil
for

d P
res

s

172 Bayesian Structural Equation Modeling

obtained, then equal variability in the latent factors is assumed across
groups.

Factor Mean Invariance

The last step that can be implemented in traditional MI testing is to exam-
ine the factor means for invariance. In this step, latent factor means are
constrained across groups. If the means are found to be invariant, then
this indicates that the latent factor is measured equivalently across groups.
This final step is sometimes not included in the traditional invariance test-
ing process and is instead treated as a post-analysis of factor means. Most
applications focus on a comparison of latent means, and this can be han-
dled through comparing intercepts in the scalar invariance step described
above.

5.1.2 Challenges within Traditional MI Testing

Full MI makes a strict assumption that the model parameters are exactly
equivalent across groups. Take for example the CFA pictured in Figure 4.1.
If the intercepts for Item 2 are different, but we constrain them to be equal in
the MI process, then the difference between these intercepts is (incorrectly)
assumed to be zero. A model specification error has been embedded since
the parameter difference between the group intercepts is forced to zero
when in fact it was non-zero (even if just slightly different from zero, it is
still a mis-specification). This constraint may result in a poorly fitting model
that prevents the researcher from interpreting model parameters. Even if
the difference in the parameters across groups is negligible, setting it equal
to zero could still result in a negative impact on fit and interpretation.

A large body of research has shown that this assumption of exact equiv-
alence is not a reasonable assumption to make for measurement models.
Many studies have shown that the latent factors, and associated model
parameters, are not exactly equivalent across groups (see, e.g., Vandenberg
& Lance, 2000; Millsap, 2011). In fact, departures in model parameters
across groups can be linked to biased estimates when the parameters are
held equivalent. One potential solution to this issue is to allow for small
departures in model parameters across groups within the MI process. One
such way of implementing this technique is through the use of Bayesian ap-
proximate MI, which implements near-zero priors akin to those described
in Chapter 3.
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5.2 Bayesian Approximate MI

In Chapter 3, we saw that Bayesian statistics can allow a certain amount of
flexibility in how factor loadings are handled in a CFA. In particular, near-
zero priors can be placed on parameters to avoid constraining potentially
non-zero parameters to zero.

This same concept can be extended to the case of assessing for MI.
In the traditional MI approach, parameters are held to be exactly equal
across groups during the different steps of invariance testing. However,
this equivalence may be overly restrictive in nature. It is unlikely that
the researcher is interested in holding parameters to be exactly equal across
groups. Instead, the interest is likely in approximate equivalence. Bayesian
methods allow a more flexible treatment of the restricted MI approach by
allowing for small differences in parameter estimates across groups. In
other words, a factor loading does not have to be exactly equal across
groups for invariance to hold (i.e., when the groups are exactly equal, then
the difference in the loadings would be exactly zero across groups). Instead,
the difference between the loadings would be approximately zero, adding
some “wiggle” room or flexibility for what is considered invariant. This
added flexibility is handled through the use of carefully specified priors
placed on all parameter constraints tested throughout the MI steps.

Based on the description of the invariance testing steps above, MI im-
plies that the measurement model, relationship between observed (con-
tinuous) item indicators and the latent factors, the factor covariances, and
the intercepts are equal across groups. In other words, group membership
does not dictate anything about the relationship between items and factors,
or how the factors covary.

The flexibility that Bayesian methods afford regarding approximate ze-
ros in the context of estimating measurement models (in the non-group
setting) was nicely described in B. O. Muthén and Asparouhov (2012a).
These concepts were extended to the case of MI testing in van de Schoot
et al. (2013). Essentially, the same premise that was described in Chapter
3 is applied here. Narrow priors centered at zero are used to allow some
“wiggle” room around zero. Instead of the difference between parameters
being fixed to zero, it is allowed to vary slightly–within the bounds of the
specified prior. The researcher would work to determine the optimal vari-
ance of the difference prior in order to pinpoint how narrow (or wide) it
should be surrounding zero. This feature allows model results to be inter-
preted even if exact equivalence does not hold for model parameters across
groups.
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There are many benefits to using the Bayesian approximate MI ap-
proach, including: more accurate parameter estimates, the inclusion
of small (non-zero) cross-loadings in the measurement model, and bet-
ter performance than partial MI when parameter differences are small
(B. O. Muthén & Asparouhov, 2013; Pokropek, Davidov, & Schmidt, 2019;
van de Schoot et al., 2013).

However, there is also one assumption that must be met for applica-
tion of this method, and it is tied to parameterization indeterminacies–also
referred to as an alignment issue. B. O. Muthén and Asparouhov (2013)
indicated that differences between parameters across groups must be small
and non-systematic. The following example is based on one described in
B. O. Muthén and Asparouhov (2013). Let’s assume that Item 2 from Figure
4.1 is associated with invariance across multiple groups (> 2), with the ex-
ception of the last group, where there is a large positive deviation from the
other groups. The near-zero prior will pull this deviating parameter toward
the average value for that parameter across all groups. In effect, this causes
the deviating parameter to be smaller in size, and the remaining invariant
parameters are pulled to be larger than the true values. Essentially, the
near-zero prior contributes to the model being mis-specified (through the
prior) because it did not properly capture the group that deviated substan-
tially from the other groups. When intercepts (or thresholds) or loadings
are estimated with bias, then it follows that factor means and factor vari-
ances will also be biased. The substantive result is that comparing factor
means across groups (which is likely a driving reason for conducting the
MI process to begin with) will lead to incorrect interpretations because
estimates are biased. The alignment issue can be resolved by combining
approximate and partial MI to allow the systematic freeing of parameters
that violate this assumption.

Another major issue to discuss within Bayesian approximate MI is the
specification of the difference prior (i.e., the near-zero prior). Before delving
into that issue, I present the model that will be used in a subsequent exam-
ple. The presentation of the model will be followed by additional details
surrounding the implementation of priors for approximate MI testing.

5.3 The Model and Notation

To illustrate the issues underlying MI and Bayesian approximate MI, con-
sider the same model described in Chapter 4 for multiple-group modeling.
The multiple-group CFA incorporating a mean structure analysis can be
written out as a simple extension of the basic CFA such that
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x(g) = τx(g) +Λx(g)ξ(g) + δ(g) (5.1)

where the x’s represent the observed indicators (e.g., the individual items
on a questionnaire), which are linked to latent factors ξ through the factor
loading matrix denoted as Λx(g). Akin to Equation 4.1 presented in the last
chapter, τ is a vector of intercepts with dimension q × 1, where q is the
number of observed x items. This vector is needed if the latent variable
mean differences are to be compared across the groups. The g subscript is
placed throughout the model to denote that the parameters are allowed to
vary across the g = 1, . . . ,G groups. All observed indicators also correspond
to measurement errors δ, which are composed of specific variances and
random components of observed indicators x. We also assume that E(δ = 0),
and that all errors are left uncorrelated with the latent factors (ξ). The
equation can be written out in the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(g)
x2(g)
x3(g)
x4(g)
x5(g)
x6(g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

τ1(g)
τ2(g)
τ3(g)
τ4(g)
τ5(g)
τ6(g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11(g) λ12(g)
λ21(g) λ22(g)
λ31(g) λ32(g)
λ41(g) λ42(g)
λ51(g) λ52(g)
λ61(g) λ62(g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
[
ξ1(g)
ξ2(g)

]
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ1(g)
δ2(g)
δ3(g)
δ4(g)
δ5(g)
δ6(g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where, for example,

Λx(g) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ11(g) = ? λ12(g) = 0
λ21(g) = ? λ22(g) = 0
λ31(g) = ? λ32(g) = 0
λ41(g) = 0 λ42(g) = ?
λ51(g) = 0 λ52(g) = ?
λ61(g) = 0 λ62(g) = ?

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.2)

In the case of the multiple-group model, these free parameters (marked
with “?”) are allowed to differ across groups.

The covariance structure for the CFA model can also be written in terms
of multiple groups. The covariance form is as follows:

Σ(θ(g)) = Λx(g)Φξ(g)Λ
′
x(g) +Θδ(g) (5.3)

where Σ(θ) represents the covariance matrix of x as represented by θ, but it
is allowed to vary across the g groups being examined. Λx still represents
the factor loading matrix, and Φξ is the covariance matrix for the latent
factors (ξ). Finally,Θδ is the covariance matrix for the error terms (δ) linked
to the item indicators (x).
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In a mean-structure situation, the following assumption is typically
made:

E(xg) = τx(g) +Λx(g)E(ξ(g))
= τx(g) +Λx(g)κ(g)

(5.4)

where κ(g) is a k-dimensional vector of factor means for group g, where k
represents the number of factors present in the model. Under the frequen-
tist framework, there is need for an additional constraint to be added to
this in order for model identification to be satisfied (Bollen, 1989; Kaplan,
2009). That constraint could be to set κ = 0, which results in the factor
mean estimates being interpreted as differences between the g groups (i.e.,
removes one restriction and allows factor means to be identified). Given
that such identification issues are not necessary to address in the Bayesian
framework, this constraint need not be added unless substantively desired.

A basic form of the multiple-group CFA can be found in Figure 5.1,
which was constructed to represent the example data explored below (and
matches the model from Figure 4.1). This model contains three factors (ξ),
each comprising three items (with loadings contained in the Λx matrix).
The factors are allowed to correlate viaΦξ. All item indicators correspond
to error terms (δ), with variances denoted as σ2

δ. In this model, there are no
cross-loadings present, and all errors are left uncorrelated (although they
need not be).

5.4 Priors within Bayesian Approximate MI

Now that the model has been presented, we can identify several different
parameters that may be of interest in the approximate MI process. Depend-
ing on the researcher’s goals and the level of invariance being examined,
near-zero difference priors can be placed on a variety of model parameters
(loadings, intercepts, etc.).

The near-zero prior is placed on a difference parameter that is specified
for the difference between two groups on a single parameter. Take, for
example, a factor loading for Item 2 on a factor. To set up a near-zero prior,
the difference between the loading for Group 1 and the loading for Group 2
would be of interest. In traditional MI approaches, this difference would be
set to zero, making a strict model constraint of exact equivalence between
the two groups. However, in Bayesian approximate MI, this difference is al-
lowed to vary (even just slightly so) from zero through the implementation
of the near-zero prior. An example of this prior looks as follows:
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FIGURE 5.1. The Multiple-Group CFA Model.

λ(G1)
21 − λ(G2)

21 ∼ N[0, 0.001] (5.5)

where the loading for Factor 1, Item 2 (λ21) is compared across groups (G1
and G2, in this case) by setting up a difference parameter. This parameter is
assumed to be distributed normal (N), with a mean hyperparameter of zero
and a variance hyperparameter set to some predetermined value specified
by the researcher (e.g., 0.001 in this example).

One of the main questions is what these difference priors should look
like. In other words: What should the variance hyperparameter be for the
difference prior? Given the context of Bayesian approximate MI testing, it is
likely that the prior will be centered at zero to represent a parameter mean
difference of zero across groups. It follows that the main issue regarding
prior specification is tied to the variance hyperparameter.

Asparouhov et al. (2015) proposed a method that implements two dif-
ferent Bayesian fit and comparison indices to aid in selecting the optimal
prior variance for the near-zero prior. Specifically, the method uses the
deviance information criterion (DIC) and the posterior predictive p-value
(PPp-value) to help select the variance.1 Asparouhov et al. (2015) suggested
estimating several models, each with a different variance hyperparameter
specified. One approach would be to start with a relatively small variance
hyperparameter value (e.g., 0.001) and then increase this value incremen-
tally for the subsequent models estimated. The decision for which prior
setting to use is based on: (1) the speed of convergence, (2) the PPp-value,
1Given that model fit is such an important element related to SEM in general, an entire
chapter on Bayesian model fit related to SEM has been included. Chapter 11 includes much
more information on these (and other) indices, as well as examples of implementation.
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and (3) the DIC. When model fit differences between models becomes neg-
ligible, or reverse in direction (e.g., from a positive to a negative difference),
then the prior variance need not be further increased. This approach was
further explored by Pokropek et al. (2020). They also recommended using
a combination of information from the DIC and PPp-value, but they placed
more weight on the DIC for decision making based on simulation results.

An example of these difference priors can be found in Figure 5.2. The
solid line represents zero difference between the model parameters, and this
is the strict assumption made in the traditional MI approach. The priors
plotted in this figure represent four different options for the approximate
MI prior setting. Each of the priors is centered at 0 but contains a different
variance hyperparameter, ranging from 0.001 to 0.1. The researcher would
decide on the optimal setting to implement and then proceed with the
approximate MI process from there. In the next section, I demonstrate the
steps needed for implementing Bayesian approximate MI.

5.5 Example: Illustrating Bayesian Approximate MI
for School Differences

In this section, I present an example using the Holzinger-Swineford (1939)
data, as implemented in Chapter 4. Here I examine a three-factor solution
of nine items (three items per factor). The base form of this model can be
found in Figure 5.1. The three factors are defined as follows:

• Factor 1: Spatial Ability

– Item 1: Visual perception

– Item 2: Cubes

– Item 3: Lozenges

• Factor 2: Verbal Ability

– Item 4: Paragraph comprehension

– Item 5: Sentence completion

– Item 6: Word meaning

• Factor 3: Task Speed

– Item 7: Speeded addition

– Item 8: Speeded counting of dots

– Item 9: Speeded discrimination straight and curved capitals
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FIGURE 5.2. Difference Prior Settings for Approximate MI.

Difference

0.5 0.0 0.5

Difference Prior
~N(0, .100)
~N(0, .050)
~N(0, .010)
~N(0, .001)
Strict MI

Within the database, there is information about two different schools:
Pasteur and Grant-White. This current example explores a multiple-group
model of this factor structure for these two schools. The total sample size
is n = 301, with 156 students from the Pasteur school (Group 1) and 145
students coming from the Grant-White school (Group 2). The main premise
of assessing MI in this context is to examine if and where the two groups
differ in the composition of the measurement model. Bayesian approximate
MI adds flexibility to this assessment.

To illustrate the Bayesian approximate MI process, I followed these
main steps:

1. I estimated invariance models following conventional MI methods
(metric, scalar, etc.). These models were estimated via Bayesian esti-
mation, but without the near-zero priors. For pedagogical purposes,
I estimated all steps of invariance testing, ignoring whether or not the
fit or comparison indices indicated tests should stop.
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2. I estimated several versions of Bayesian approximate MI to assess the
performance of different near-zero prior settings. Then I selected a
final prior setting to use in further analyses.

3. I estimated two additional models (either combining Metric + Ap-
proximate MI for intercepts, or Metric + Partial for intercepts).

4. Finally, comparisons can be made for the latent factor means of the
second school (Grant-White) across various measurement models.

Table 5.1 provides an overview of the different models estimated in this
chapter. The table highlights which model parameters were constrained to
be equal across groups or freely estimated. For example, the first model es-
timated was for configural invariance, and loadings, intercepts, and errors
were freely estimated, with factor (co)variances and factor means con-
strained. The first six rows of this table represent the traditional MI steps,
without the use of near-zero priors. The remaining rows represent the
approximate MI approach, where near-zero priors were implemented.

TABLE 5.1. Example: Different MI Steps Examined

Factor Factor
Loadings Intercepts Errors (Co)Variances Means

Configural Free Free Free Constrain Constrain

Metric Constrain Free Free Constrain Constrain

Scalar Constrain Constrain Free Constrain Constrain

Strict Fixed Constrain Constrain Constrain Constrain

Factor Variances Constrain Constrain Constrain Freea Constrain

Factor Means Fixed Constrain Constrain Constrain Freea

Approximate Approx. Approx. Constrainb Constrain Free

Approximate +
Metric Fixed Approx. Constrainb Constrain Free

Metric +
Partial Scalar Constrain Constrain Constrainb Constrain Free

(Item 3 free)
a These models are compared to the “Strict” model to see if freeing the variances or means
results in less model misfit (i.e., a lower DIC). b It is not possible to specify approximate
invariance for error variances.
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5.5.1 Results for the Conventional MI Tests

The first six models estimated represent the conventional steps for MI test-
ing. Results for these analyses are presented in the top panel of Table 5.2 on
page 183. The columns of results are the DIC, the PPp-value, and the 95%
CI associated with the difference between the observed and replicated chi-
square values. Although Chapter 11 covers these indices in more detail, I
will provide a brief description of how to interpret them here. The DIC is an
information criterion that is based on Bayesian deviance. It is interpreted
comparably to traditional information criteria (e.g., the Bayesian informa-
tion criterion and the Akaike information criterion). Typically, the model
with the lowest DIC value is selected as optimal. However, if the differ-
ence between two models is less than 5.0 and the models are substantively
different, then the researcher should not make the selection solely based
on the lowest DIC (Lee, 2007). In the case of approximate MI, Pokropek
et al. (2020) recommended values as low as 1 or 2 can be used for the DIC
differences, but it would also be wise to use information from the PPp-value
as a supplement.

Posterior predictive checks can be used to assess Bayesian model fit.
The most common method is to examine the PPp-value (Gelman, Meng,
& Stern, 1996). This process involves comparing the observed dataset to
generated (or replicated) data. During each MCMC iteration, a dataset
is generated based on current samples for the model parameters. The
generated data are compared to the model implied covariance matrix, re-
sulting in a discrepancy statistic. Then the observed data are compared
to the model implied covariance matrix, resulting in a second discrepancy
statistic. There are different discrepancy statistics that can be used, but
a common one is the chi-square goodness-of-fit statistic. The PPp-value
represents the proportion of chi-square values derived from the generated
data that exceed those obtained from the observed data. PPp-values near
0.5 imply adequate fit, whereas values closer to zero indicate that the model
does not fit the observed data well.

According to the results in Table 5.2, there is support for metric invari-
ance with a DIC of 7475.87. Given that freeing the factor (co)variances did
not result in a decrease from strict invariance, this could be taken as a sign
that these parameters can stay fixed across the groups. However, when
factor means were freed, the DIC dropped. This indicates that the factor
means are not all equal across groups, which matches the substantive re-
sults obtained in Chapter 4. Notice that the PPp-values indicate that none
of these models fit the observed data.
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5.5.2 Results for the Bayesian Approximate MI Tests

The first step in the Bayesian approximate MI process is to figure out what
the optimal variance hyperparameter is for the near-zero difference priors.
To select the specific small variance prior specification, I will follow the
iterative procedure outlined in Asparouhov et al. (2015). In addition, this
example involves a relatively smaller dataset, so the PPp-value and the
DIC should still reflect changes in the prior specification (Hoijtink & van de
Schoot, 2018). There is an alternative test that can be used for assessing
small variance priors that can outperform these indices when sample sizes
are larger. It is called the prior-posterior predictive p-value (PPPP), and I
describe this in more detail in Section 11.2.3.

Recall that Figure 5.2 showed four versions of the near-zero prior. The
results for the models implementing these priors are in the middle panel of
Table 5.2 in the rows labeled “Approximate.” The DIC values are compara-
ble for the three largest hyperparameter values, so there would likely not
be much of a difference across them. To go with convention, I will select the
approximate MI model implementing the near-zero prior ofN(0, 0.05) since
it is associated with the lowest DIC value (notice, again, that the PPp-value
indicates none of these models fit the observed data well).

Results for the analysis using the approximate MI approach with the
near-zero prior ofN(0, 0.05) are presented in Table 5.3. This table presents
results for the factor loadings and item intercepts. The first column rep-
resents the average estimate across groups, followed by the standard de-
viation. Then results for deviations from the mean are reported for each
group. None of the factor loading estimates deviated significantly from
the average factor loading–for either of the two groups. In contrast, there
was one item intercept that deviated from its average item intercept across
groups, and this was for Item 3 (“Lozenges”). Results indicated that the
intercept within each of the groups differed significantly from the average
intercept across groups. Item 3 loads onto the “Visualization” factor, and
the Group 1 intercept was 2.454 with the Group 2 intercept slightly lower
at 2.135. This indicates that the item was slightly “easier” for Group 2 in
comparison.
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TABLE 5.2. Example: Traditional and Approximate MI Model Comparison

95% CI
Model Prior DIC PPp-value Lower Upper
Configural 7482.82 0.000 29.43 103.36
Metric 7475.87 0.000 32.30 104.66
Scalar 7538.05 0.000 104.78 174.13
Strict 7536.34 0.000 113.07 179.57
Factor Variances Freed 7542.71 0.000 112.47 181.60
Factor Means Freed 7503.06 0.000 76.01 144.19
Approximate N(0, 0.001) 7496.72 0.000 67.32 137.35
Approximate N(0, 0.010) 7479.57 0.000 43.81 115.54
Approximate N(0, 0.050) 7478.05 0.000 37.56 108.77
Approximate N(0, 0.100) 7479.53 0.000 37.64 109.18
Metric + Approx N(0, 0.050) 7475.03 0.000 41.70 111.77
Metric + Partial 7497.51 0.000 69.60 137.40

Note. DIC = deviance information criterion; PPp-value = posterior predictive p-
value; CI = 95% credible interval for the difference of observed and replicated
χ2 values. Bold indicates lowest DIC value.

TABLE 5.3. Example: Difference Prior Results.

Deviations from Mean
Average SD Group 1 Group 2

Loadings
Item 1 0.869 0.084 0.030 −0.030
Item 2 0.519 0.082 0.005 −0.005
Item 3 0.701 0.078 0.037 −0.037
Item 4 0.967 0.056 0.013 −0.013
Item 5 1.060 0.061 0.080 −0.080
Item 6 0.895 0.052 −0.062 0.062
Item 7 0.624 0.078 −0.020 0.020
Item 8 0.728 0.077 −0.046 0.046
Item 9 0.669 0.078 −0.038 0.038

Intercepts
Item 1 5.005 0.120 −0.057 0.057
Item 2 6.133 0.092 −0.116 0.116
Item 3 2.299 0.104 0.157* −0.157*
Item 4 2.779 0.111 0.040 −0.040
Item 5 4.055 0.119 −0.053 0.053
Item 6 1.904 0.106 0.017 −0.017
Item 7 4.267 0.096 0.137 −0.137
Item 8 5.633 0.104 −0.063 0.063
Item 9 5.470 0.098 −0.047 0.047

Note. *Indicates a significant difference between the
group estimate and the group average.
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As a visual aid, Figure 5.3 shows the posterior densities for the Item 3
intercept, where non-invariance was obtained. The posteriors from both
groups overlap, but there is also a clear distinction and higher proportion of
the densities that do not overlap. In contrast, Figure 5.4 shows posteriors for
another item intercept (Item 5, “Sentence Completion”), where invariance
was obtained. These densities have a much more pronounced overlap
compared to Figure 5.3, highlighting the substantive difference between
the intercepts for the two items.

An additional set of models was estimated next. Some authors (see,
e.g., van de Schoot et al., 2013) suggest constraining sets of parameters
(e.g., all loadings) to equal if approximate MI testing reveals that there are
no significant differences at that level. Given the results presented in Table
5.3, I estimated a follow-up model with all factor loadings constrained,
while allowing for approximate invariance of the item intercepts (due to
Item 3’s non-invariance). The overall results for this model are presented in
the lower panel of Table 5.2 under the row heading of “Metric + Approx.”
The DIC obtained for this model was the lowest of all models estimated,
even slightly lower than the conventional metric invariance model in the
top panel of the table. An additional approach recommended (see, e.g.,
B. O. Muthén & Asparouhov, 2013) is to use the Bayesian approximate
MI findings to specify a partial MI model. In this final model, all factor
loadings and item intercepts (with the exception of Item 3) were constrained
across groups; error variance and factor variances were also constrained.
Results for this model are presented in Table 5.2 under the row heading of
“Metric + Partial.” The DIC for this model resulted in a value between the
conventional metric and scalar models in the upper panel, and it closely
matched the approximate MI model with a variance hyperparameter of
0.001. Overall, results indicated that the “Metric + Approx” option is
optimal based on the DIC, but none of the models fit according to the
PPp-value.

5.5.3 Results Comparing Latent Means across Approaches

Finally, it is worthwhile to highlight what some of these findings mean in a
substantive sense. Table 5.4 on page 186 presents the Group 2 latent factor
means for the three factors (the factor means are fixed to zero in Group
1 during the MI process). The first column of results (“Approximate”) is
from the model where the factor loadings and item intercepts are modeled
as approximately MI through near-zero priors; note that error variances
and factor variances were constrained here. The second column of results
(“Metric + Approximate”) represents the model that combines metric MI
with approximate MI for the item intercepts; again, constraining error vari-
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ance and factor variances. The third column of results (“Strict”) model
that assumed strict MI, with constrained loadings, intercepts, error vari-
ances, and factor variances. The final column of results (“Metric + Partial”)
represents the last model estimated, where all factor loadings and item
intercepts (with the exception of Item 3) were constrained across groups;
error variance and factor variances were also constrained.

Compared to the selected model (“Metric + Approximate”), the other
three models tended to overestimate the mean difference (compared to
zero) of the “Visualization” factor; this was especially the case for the
“Metric + Partial” model. In addition, these same three models slightly
underestimated the mean of the “Verbal Intelligence” and “Speed” fac-
tors. In terms of substantive conclusions–namely, whether factor means
are different across groups–there are no differences in the methods being
compared. In other words, regardless of the invariance model selected,
we still conclude that the two schools only differ in terms of their verbal
intelligence.

FIGURE 5.3. Posterior Densities for Item 3: Lozenges (Showing Non-Invariance).

Posterior Densitiy

3. Lozenges (Intercept)

Group

Group 1
Group 2

1.2 1.8 2.4 3.0
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FIGURE 5.4. Posterior Densities for Item 5: Sentence Completion (Showing Invariance).

Posterior Densitiy

5. Sentence Completion (Intercept)

Group

Group 1
Group 2

3.0 3.5 4.0 4.5 5.0

TABLE 5.4. Example: Latent Factor Mean Estimates for Group 2

Strict (Fixed
Metric Factor Variance) Metric

Approximate + Approximate + Free Means + Partial
Visualization −0.172 (0.24) −0.152 (0.23) −0.170 (0.15) −0.302 (0.16)
Verbal Intelligence 0.612 (0.19)* 0.616 (0.18)* 0.603 (0.13)* 0.604 (0.13)*
Speed −0.282 (0.23) −0.305 (0.24) −0.271 (0.14) −0.272 (0.14)

Note. Values in parentheses are standard deviations. *Indicates significant group differ-
ence.

5.6 How to Write Up Bayesian Approximate MI
Results

In the current study, we were specifically interested in whether there were
school differences between the measurement model illustrated in Figure
5.1. We believe identifying potential differences will help us to better un-
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derstand the disparities between...[Authors could go on to explain location,
race/ethnicity, income, and so forth. Factors such as these would likely be the driv-
ing reason for being interested in MI.] In order to assess these differences, we
set up a multiple-group CFA and made group comparisons across schools
(School 1: n = 156, and School 2: n = 145).

5.6.1 Hypothetical Data Analysis Plan

[A data analysis plan should be constructed prior to data analysis. In cases in
which data are collected (e.g., as opposed to secondary data analysis situations),
the data analysis plan should be in place prior to data collection. The goal of the
plan is to solidify the variables, model, and priors that will be examined at the
analysis stage.]

We are interested in examining differences across two schools regard-
ing ability level, with the specific goal to test for measurement invariance
across groups. The schools represent different areas of the district that are
of interest because of funding differences. [Go on to describe the rationale
underlying the groups that are going to be compared.] We plan to collect data
from School A (representing a lower-funded school) and School B (repre-
senting a school from the highest tier of funding) using the following data
collection process. [Details about the selection of classrooms and children should
be included here, as well as the target number of children to collect data from.
Additional justifications or details may be provided in the case of secondary data
analysis. For primary data collection situations, the population of interest should
be thoroughly described.]

Ability will be defined using the ability scale described in Author et al.
(20xx). This scale includes nine items that are theorized to form three factors
of: Spatial Ability, Verbal Ability, and Speed. [Include more detail as to why
the scale was selected, as well as why these specific factors are of substantive interest
in terms of the groups being examined.] In order to compare the two schools
based on these ability types, we are proposing a Bayesian approximate
measurement invariance process. Measurement invariance will allow us
to examine whether there are any measurement model differences between
School A and School B regarding the three latent factors proposed above.

The Bayesian approach will allow for approximate equivalence rather
than strict equivalence through the use of near-zero priors. This approach
was described as a more flexible treatment for assessing measurement in-
variance in ability by Author et al. (20xx). [Next, go through and describe
all of the priors that will be implemented, making sure to provide details for how
hyperparameters will be specifically defined.] The analysis plan has been pre-
registered at the following site: [include link].
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5.6.2 Hypothetical Analytic Procedure

For all stages of MI testing, we used the three-factor CFA pictured in Figure
5.1. To identify this model, the first factor loading for each factor was set
to 1.0. Factors were allowed to correlate freely. Prior to implementing the
Bayesian approximate MI process, we examined the model across groups
using the traditional approach to MI testing with full information ML es-
timation. (Note that the traditional approach need not be included if the desired
focus is only on the Bayesian implementation.) We tested configural, met-
ric, and scalar invariance. We then decided to explore partially invariant
models only as applicable.

Next, we estimated the model using the Bayesian approximate MI ap-
proach for factor loadings and item intercepts. [Depending on the journal
audience, the authors may want to add a few sentences of justification for why
a Bayesian approach was included. It may be helpful to include prose about the
added flexibility of allowing for small differences through the use of the prior, rather
than assuming exact equivalence through the traditional approach.] We have fol-
lowed the general guidelines presented in B. O. Muthén and Asparouhov
(2013) for implementation of Bayesian approximate MI. Within the approx-
imate MI process, difference priors were placed across the two schools (i.e.,
groups) for the factor loadings and intercepts. The difference priors took
on this form: difference ∼ N(0, σ2), where the variance hyperparameter σ2

was determined by incrementally testing several values. We then identi-
fied invariant and non-invariant parameters. The model was re-estimated
with invariance parameters specified through near-zero priors. We used
the Mplus software version 8.4 (L. K. Muthén & Muthén, 1998-2017), and
all code is presented in the online appendix.

For the traditional MI approach, we used the robust ML estimator.
For the Bayesian implementation, we used the Gibbs sampler with two
chains containing 50,000 burn-in iterations and 50,000 post-burn-in itera-
tions. Convergence was monitored using the PSRF, or R̂, a convergence
criterion developed by Gelman and Rubin and extended upon in later re-
search (Brooks & Gelman, 1998; Gelman & Rubin, 1992a, 1992b; Vehtari et
al., 2019). In order to ensure convergence was obtained, we used a stricter
cutoff for the PSRF than the default software setting. We used a value of
1.01 rather than the default of 1.05. In addition to using the PSRF, we also
visually examined all trace-plots for signs of non-convergence or other is-
sues. To ensure that convergence was obtained, and that local convergence
was not an issue, we estimated the model again with double the number
of iterations (and double the length of burn-in). The PSRF criterion was
satisfied and trace-plots still exhibited convergence. Next, we computed
the percent of relative deviation, which can be used to assess how similar
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results are across multiple analyses. To compute this deviation, we used the
following equation for each model parameter: [(estimate from expanded
model) − (estimate from initial model)/(estimate from initial model)] ∗ 100.
We found that results were comparable across the two analyses, with rel-
ative deviation levels less than |1%|. After conducting these checks, we
were confident that convergence was obtained for the final analysis. Aside
from the small variance difference priors, default prior specifications in
Mplus were used for all parameters in the model (L. K. Muthén & Muthén,
1998-2017).

5.6.3 Hypothetical Results Section

Table 5.2 shows results for the traditional MI approach, with the first six
rows representing model estimation using robust ML. There is support
for metric invariance with a DIC of 7475.87. Given that freeing the factor
(co)variances did not result in a decrease from strict invariance, this could
be taken as a sign that these parameters can stay fixed across the groups.
However, when factor means were freed, the DIC dropped. This indicates
that the factor means are not all equal across groups. Notice that the PPp-
values indicate that none of these models fit the observed data well.

Next, we implemented Bayesian approximate MI. We examined four
potential settings for the near-zero prior variance hyperparameter setting.
Results for these analyses are in Table 5.2 and, based on these results, we
selected the value of 0.05 for the variance hyperparameter. There was
no distinguishable difference between the three lowest variance values
examined according to the DIC. Results for the analysis implementing
the N(0, 0.05) difference prior setting on factor loadings and intercepts are
reported in Table 5.3.

The first column represents the average estimate across groups, fol-
lowed by the standard deviation. There was only one item intercept that
deviated significantly across groups, and it was for Item 3 (“Lozenges”).
Item 3 loads onto the “Visualization” factor, and the Group 1 intercept was
2.454 with the Group 2 intercept slightly lower at 2.135. This indicates that
the item was slightly “easier” for Group 2 in comparison; a visual depiction
of the group differences for this item intercept can be found in Figure 5.3.
Otherwise, results were comparable across groups.

Following van de Schoot et al. (2013), we then constrained all loadings
across groups. These parameters did not yield any significant differences
through the Bayesian approximate MI process. These results are in the
lower panel of Table 5.2 under the row heading of “Metric + Approx.”
Overall, results indicated that the “Metric + Approx” option is optimal
based on the DIC, but none of the models fit according to the PPp-value.



Cop
yri

gh
t ©

 20
21

 The
 G

uil
for

d P
res

s

190 Bayesian Structural Equation Modeling

5.6.4 Discussion Points Relevant to the Analysis

The Bayesian approximate MI approach was implemented here in order to
introduce the added flexibility of allowing for “wiggle” room in the differ-
ence parameters rather than assuming exact equivalence across groups. It
may not always be a viable approach to assume exact equivalence across
groups. This Bayesian approach also works well when sample sizes within
the groups are relatively small. One drawback of the approximate MI
approach is that it can lead to biased results in latent factor means and vari-
ances when parameter differences across groups are large or systematic.

[The researcher may go on to describe substantive differences that were ob-
tained.]

[There are also issues tied to model fit that are further discussed in Chapter 11,
which can be included in a discussion section for Bayesian approximate MI.]

5.7 Chapter Summary

The Bayesian approximate MI approach allows for added flexibility in im-
plementing “wiggle” room surrounding parameter differences. The ability
to allow parameters to differ an amount that is not substantively mean-
ingful can have broader impact on how MI is assessed. The traditional
approach fixes group differences to be exactly zero. If certain fit crite-
ria are not met, then the researcher may be left to relax the invariance
specification altogether or even delete items from a scale that are deemed
non-invariant. These actions could result in substantively altering the scale
being examined, or treating negligible group differences as non-invariant.
The Bayesian approximate MI approach allows for researchers to address
these situations in a way that minimizes restrictions and improves flexibil-
ity of the modeling process.

An important component of the Bayesian approximate MI approach,
just as with the traditional ML-based approach, deals with the assessment
of model fit. In this chapter, I introduced the DIC and PPp-value as compar-
ison and fit measures, respectively. Bayesian fit is a much larger issue than
how it was presented in the current chapter. As a result, I have included
additional information relevant to this topic in Chapter 11 regarding model
fit and comparison.

5.7.1 Major Take-Home Points

The Bayesian approximate MI approach is highly flexible and circumvents
the traditional requirement of assuming parameters are exactly equal across
groups. Instead, this approach allows for a reasonable amount of “wig-
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gle” room surrounding the parameter difference across groups. The idea
here is that model results obtained are a more accurate representation of
the substantive findings. In turn, the approach avoids possible model
mis-specifications, where non-equivalent parameters are constrained to be
equal. Here are some final points to consider surrounding Bayesian ap-
proximate MI:

1. Be aware of the alignment issue, which is linked to parameteriza-
tion indeterminacies within the Bayesian approximate MI approach
(B. O. Muthén & Asparouhov, 2013). Parameter differences must be
small and non-systematic across groups in order for the near-zero
priors to be properly implemented. If the assumption is violated,
then approximate and partial MI should be combined to allow for
systematic freeing of parameters in violation.

2. This approach can be easily scaled to handle many groups (or time
points, as described in Chapter 8) and latent variables, and it works
well when sample sizes are relatively small and traditional ML-based
approaches fail (see, e.g., Winter & Depaoli, 2019).

3. The guidelines for selecting the variance hyperparameter value for the
near-zero difference prior are still rather loose. Researchers should be
mindful to carefully select the variance hyperparameter value, justify
the selection, and potentially follow up with a sensitivity analysis
examining the impact of different variance hyperparameter settings.
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5.7.2 Notation Referenced

• x: vector of observed indicators (e.g., items on a questionnaire)

• g: subscript of g denotes the parameter is allowed to vary
across g groups

• τ: vector of intercepts tied to the x indicators

• q: the number of observed x variables

• Λx: factor loading matrix for the x indicators

• ξ: vector of latent factors

• δ: vector of measurement errors associated with x item indica-
tors

• Σ(θ): covariance matrix of x, as represented by θ

• Φξ: covariance matrix for the latent factors (ξ)

• Θδ: covariance matrix for the error terms (δ)

• E(. . .): expected value

• κ: vector of factor means

• N : the normal prior distribution

• λ(G1)
21 : factor loading for Factor 1, Item 2, Group 1

• λ(G2)
21 : factor loading for Factor 1, Item 2, Group 2

• difference ∼ N(0, σ2): difference prior across two groups for a
model parameter (e.g., a factor loading)

• σ2: variance hyperparameter for the difference prior
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5.7.3 Annotated Bibliography of Select Resources

Millsap, R. E. (2011). Statistical approaches to measurement invariance. New
York, NY: Routledge.

• This book provides a comprehensive treatment of issues within the
traditional approach to measurement invariance testing. It covers all
of the steps researchers would take, as well as problems that can arise
during the testing process.

Muthén, B. O., & Asparouhov, T. (2013). BSEM measurement in-
variance analysis. Mplus Web Notes: No. 17. Retrieved from
https://www.statmodel.com/examples/webnotes/webnote17.pdf

• This unpublished webnote provides details surrounding the imple-
mentation and theory underlying Bayesian approximate measure-
ment invariance. Along with examples and simulations, it provides
explanations of issues such as the parameterization indeterminacies
that can arise during Bayesian implementation of the process. It is a
great resource for researchers wanting to implement these methods.

van de Schoot, R., Kluytmans, A., Tummers, L., Lugtig, P., Hox, J., &
Muthén, B. (2013). Facing off with Scylla and Charybdis: A comparison
of scalar, partial, and the novel possibility of approximate measurement
invariance. Frontiers in Psychology: Quantitative Psychology and Measurement,
4, 1-15.

• This paper introduces a thorough application of the Bayesian approx-
imate measurement invariance process. It covers the benefits of the
approach and then walks the reader through an example, highlight-
ing the use of approximate-zero priors. It is a nice introduction to
some of the issues that arise during Bayesian approximate MI testing.
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5.7.4 Example Code for Mplus

This is an example of partial Mplus code for Bayesian approximate mea-
surement invariance testing. In this case a difference prior of N(0, 0.05) is
being implemented on factor loadings and intercepts. Arguments denoting
estimation, number of chains, burn-in, and so forth, can be added to this
base code.

MODEL:

%OVERALL%

f1 BY x1-x3*;

f2 BY x4-x6*;

f3 BY x7-x9*;

[x1-x9];

! Labeling is crucial for invariance testing

! Be sure to hold parameters free/constrained as needed

%c#1%

f1 BY x1-x3* (lam11-lam13);

f2 BY x4-x6* (lam14-lam16);

f3 BY x7-x9* (lam17-lam19);

[x1-x9] (nu11-nu19);

f1@1;

f2@1;

f3@1;

[f1@0];
[f2@0];
[f3@0];

%c#2%

f1 BY x1-x3* (lam21-lam23);

f2 BY x4-x6* (lam24-lam26);

f3 BY x7-x9* (lam27-lam29);

[x1-x9] (nu21-nu29);

f1@1;

f2@1;

f3@1;

[f1*0];
[f2*0];
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[f3*0];

!f1 with f2 f3;

!f2 with f3;

MODEL PRIORS: !These are the near-zero, difference priors

DO(1,9) DIFF(lam1#-lam2#)∼N(0,0.05);
DO(1,9) DIFF(nu1#-nu2#)∼N(0,0.05);

For more information about these commands, please see the L. K. Muthén
and Muthén (1998-2017) sections on CFA, multiple-group, invariance test-
ing, and Bayesian analysis.

5.7.5 Example Code for R

Here is an example of basic measurement invariance using blavaan in R,
but it does not include the use of difference priors akin to the Mplus code
provided. In this case, model fit is compared across a model with free
loadings across groups (fit1) and a model with loadings held equal across
groups (fit2).

library(blavaan)

HS.model <- ‘ visual =∼ x1 + x2 + x3
textual =∼ x4 + x5 + x6
speed =∼ x7 + x8 + x9 ’
fit1 <- bcfa(HS.model, data = HolzingerSwineford1939,

group = "school")

fit2 <- bcfa(HS.model, data = HolzingerSwineford1939,

dp = dpriors(...),

n.chains = 2,

burnin = 10000,

sample = 10000,

inits = "prior",

group = "school", group.equal = "loadings")

There are many helpful commands in the blavaan package, and this exam-
ple code highlights the key features. The command dp = dpriors(...)
can be used to override the default prior settings and list user-specified
priors. The n.chains command controls the number of chains used in the
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analysis. In this case, two chains have been specified for each model pa-
rameter. The burnin command is used to specify the number of iterations
to be discarded in the burn-in phase. The sample command dictates the
number of post-burn-in iterations (i.e., the number of iterations comprising
the estimated posterior). The inits command can be used to specify the
initial values for each model parameter. There are several different options
that can be used here: “simple,” “Mplus,” “prior,” and “jags.” The default
setting in blavaan is “prior,” which determines the starting parameter val-
ues based on the prior distributions specified in the model. The command
group indicates the grouping variable is school for this analysis. Finally, the
command group.equal can be used for the invariance testing process.

For more information on using the bcfa command in blavaan, see Merkle
and Rosseel (2018) for a tutorial.
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