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1.1	 CHAPTER OVERVIEW

It goes without saying that missing data are a pervasive interdisciplinary problem. Not 
surprisingly, how we deal with the issue can have a major impact on the validity of sta-
tistical inferences and the substantive conclusions from a data analysis. In a highly cited 
paper nearly 20 years ago, Schafer and Graham (2002) described maximum likelihood 
estimation and Bayesian multiple imputation as “state-of-the-art” missing data-handling 
procedures. A lot has changed since then, and these approaches are now considerably 
more mature and far more capable than they were at the time. The Bayesian paradigm has 
simultaneously gained in popularity and is now an important alternative to maximum 
likelihood and multiple imputation rather than an estimation method co-opted for the 
latter. This trio of contemporary analytic approaches forms the core of the book, which 
I’ve rewritten from the ground up to showcase new developments and applications.

Modern missing data-handling procedures have a lot to offer, but we need to under-
stand when and why they work. The first half of this chapter sets the stage with a sum-
mary of Rubin and colleagues’ theoretical framework for missing data problems (Little & 
Rubin, 1987, 2020; Mealli & Rubin, 2016; Rubin, 1976). This nearly universal classifica-
tion system comprises three missing data mechanisms or processes that describe differ-
ent ways in which the probability of missing values relates to the data. From a practical 
perspective, Rubin’s mechanisms function as data analysis assumptions that dictate the 
validity of our statistical inferences. As you will see, these assumptions involve mostly 
untestable propositions, although we can take steps to make certain conditions more 
plausible. This includes leveraging additional variables that carry information about the 
missing values but are not part of the main analysis plan.

The middle section of the chapter describes a small selection of older missing data-
handling methods. Methodologists have been studying missing data problems for the 
better part of a century, and the statistical literature is replete with potential solutions, 
most of which are historical footnotes. Researchers are now broadly aware that bet-
ter options are available, so I limit this section to a small collection of strategies you 
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may still encounter in published research articles or statistical software packages. I use 
computer simulation studies to highlight the shortcomings of these methods relative to 
modern approaches such as maximum likelihood estimation.

The chapter concludes with sections on planned missing data designs that intro-
duce intentional missing values as a device for reducing respondent burden or lowering 
research costs. Purposefully creating missing data might seem like a bad idea, but this 
strategy is perfectly appropriate and cannot introduce bias. Although analyzing fewer 
data points necessarily reduces power, the reduction can be surprisingly small, espe-
cially for longitudinal variants of these designs. I describe strategies for creating good 
designs, and I illustrate how to use computer simulations to vet their power.

1.2	 MISSING DATA PATTERNS

A missing data pattern refers to the configuration of observed and missing values in 
a data set. This term should not be confused with a missing data mechanism, which 
describes possible relationships between the data and one’s propensity for missing val-
ues. Roughly speaking, patterns describe where the holes are in the data, whereas mech-
anisms describe why the values are missing. Figure 1.1 shows six prototypical missing 
data patterns, with shaded areas representing the location of the missing values. The 
univariate pattern in panel a has missing values isolated on a single variable. This pat-
tern could occur, for example, in an experimental setting where outcome scores are 
missing for a subset of participants. A univariate pattern is one of the earliest missing 
data problems to receive attention in the statistics literature, and a number of classic 
resources are devoted to this topic (e.g., Little & Rubin, 2020, Ch. 2). Panel b shows a 
monotone missing data pattern from a longitudinal study where individuals with miss-
ing data at a particular measurement occasion are always missing subsequent measure-
ments. Monotone patterns received attention in the early literature, because this con-
figuration of missing values can be treated without complicated iterative estimation 
algorithms (Jinadasa & Tracy, 1992; Schafer, 1997, pp. 218–238).

The general pattern in panel c has missing values scattered throughout the entire 
data matrix. Importantly, the three contemporary methods that form the core of this 
book—maximum likelihood, Bayesian estimation, and multiple imputation—work well 
with this configuration, so there is generally no reason to choose an analytic method 
based on the missing data pattern alone. Panel d illustrates a planned missing data 
pattern where three of the variables are intentionally missing for a large proportion 
of respondents (Graham, Hofer, & MacKinnon, 1996; Graham, Taylor, Olchowski, & 
Cumsille, 2006). As described later in the chapter, planned missingness designs can 
reduce respondent burden and research costs, often with minimal impact on statistical 
power. Panel e shows a pattern where a latent variable (denoted Y4 *) is missing for the 
entire sample. This pattern will surface in Chapter 6 with categorical variable models 
that view discrete responses as arising from an underlying latent variable distribution 
(Albert & Chib, 1993; Johnson & Albert, 1999).

One final configuration warrants attention, because it can introduce estimation 
problems for modern missing data-handling procedures. For lack of a better term, I refer 

2	 Applied Missing Data Analysis	



Cop
yri

gh
t ©

 20
22

 The
 G

uil
for

d P
res

s

to the configuration in panel f as an underidentified missing pattern, because the data 
provide insufficient support for estimation. The figure depicts a situation where the pro-
portion of cases with data on both Y3 and Y4 is so small that it would be difficult or impos-
sible to estimate the bivariate association between these variables. This pattern often 
occurs with pairs of categorical variables, where unbalanced group sizes and missing 
data combine to produce very low or even zero cell counts in a cross-tabulation table. It 
is important to screen for this configuration prior to conducting a missing data analysis.

1.3	 MISSING DATA MECHANISMS

Rubin and colleagues (Little & Rubin, 1987; Rubin, 1976) introduced a classification 
system for missing data problems that is virtually universal in the literature. This work 
outlines three missing data mechanisms or processes that describe different ways in 
which the probability of missing values relates to the data: missing completely at ran-
dom (MCAR), missing at random (MAR), and missing not at random (MNAR). From a 

 FIGURE 1.1.   Six missing data patterns. The gray shaded areas of each bar represent missing 
observations.
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practical perspective, these processes are vitally important, because they function as 
statistical assumptions for a missing data analysis. However, the terms can be confusing 
(e.g., missing at random refers to a systematic process), and published research articles 
sometimes conflate their meaning. In the years since Rubin’s seminal work, methodolo-
gists have clarified certain aspects of his original definitions (Mealli & Rubin, 2016; 
Raykov, 2011; Seaman, Galati, Jackson, & Carlin, 2013) and have added special sub-
types of processes (Diggle & Kenward, 1994; Little, 1995). As an aside, I mostly avoid 
acronyms throughout the book, but I generally refer to missing data mechanisms by 
their abbreviations.

Partitioning the Data

Rubin’s missing data theory envisions a hypothetically complete data set partitioned into 
observed and missing components. To illustrate, Table 1.1 shows a data excerpt from a 
sample of 500 observations and three variables. The complete data in the leftmost set of 
columns is partly imaginary, because some its values are missing. The would-be scores 
are shown in bold typeface. The table’s middle two sets of columns separate the observed 
and missing parts of the data. Symbolically, this partition is Y(com) = (Y(obs), Y(mis)), where 
Y(com) denotes the hypothetically complete data, Y(obs) represents the observed scores, 
and Y(mis) contains the would-be values of the missing data. Although Y(com) and Y(mis) 
are fairly standard in the literature, other sources use Y(0) and Y(1) (Little & Rubin, 2020; 
Mealli & Rubin, 2016).

The missing data mechanisms described below are essentially models that explain 
whether a participant has missing values and how those tendencies relate to the real-
ized data in Y(obs) or Y(mis). The target of these missingness models is a set of missing 
data indicators that functions as random variables. We may or may not need to specify 

TABLE 1.1. Would‑Be Complete Data Partitioned into Observed 
and Missing Parts

ID

Complete Observed Missing Indicators

Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3 M1 M2 M3

    1 13 30 15 13 30 — — — 15 0 0 1

    2 19 38 28 19 38 28 — — — 0 0 0

    3 20 18   8 20 18   8 — — — 0 0 0

    4 17 39 28 — 39 — 17 — 28 1 0 1

    5 22 26 12 22 26 12 — — — 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

496 14 36 22 — 36 22 14 — — 1 0 0

497 28 12   7 28 —   7 — 12 — 0 1 0

498 22 30 10 22 30 10 — — — 0 0 0

499 24 38 13 24 38 13 — — — 0 0 0

500 29 8   8 — —   8 29   8 — 1 1 0
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distributions for these variables, but they are nevertheless integral to the theory. The 
rightmost set of columns in Table 1.1 show the matrix of binary missing data indicators 
M that code whether scores are observed or missing; Mv = 0 if a participant’s score on 
variable Yv is observed, and Mv = 1 if Yv is missing.

Missing data mechanisms describe different ways in which the pattern of 0’s and 
1’s may relate to the realized data in Y(obs) or Y(mis). Rubin’s framework describes three 
possibilities: The MCAR mechanism stipulates that the propensity for missing values is 
unrelated to the data; an MAR process posits that missingness is related to the observed 
parts of the data only; and an MNAR mechanism allows missingness to depend on the 
unseen scores. To make each mechanism more concrete, I used computer simulation to 
create bivariate data sets that conform exactly to each process. I modeled the artificial 
samples after the perceived control over pain and depression variables from the chronic 
pain data set on the companion website. This data set includes psychological correlates 
of pain severity (e.g., depression, pain interference with daily life, perceived control 
over pain) from a sample of N = 275 individuals suffering from chronic pain. Figure 
1.2 shows the scatterplot of the hypothetical complete data (i.e., Y(com)) for an artificial 
sample of the same size. The contour rings convey the perspective of a drone hovering 
over the peak of the bivariate normal population distribution. I subsequently deleted 
50% of the depression scores following each mechanism.

 FIGURE 1.2.  Complete- data scatterplot showing the would-be values of two variables from a 
sample of 250 participants.
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Missing Completely at Random

A missing completely at random mechanism states that the probability of missing val-
ues is unrelated to both the observed and missing parts of the realized data. This process 
is what researchers think of as purely haphazard missingness. The formal definitions of 
Rubin’s mechanisms involve the conditional distribution of the indicator variables in M 
given the realized data in Y(obs) and Y(mis). The distribution for an MCAR process is

	 ( ) ( )( ) ( )obs misPr 1| , , Pr 1|= = =φ φM Y Y M 	 (1.1)

where φ is a set of missingness model parameters that link the data to the indicators (e.g., 
φ could contain logistic or probit regression coefficients). The left side of the expression, 
which contains the full complement of possible associations between the indicators and 
the data, says that the probability of a missing score depends on both the observed and 
missing parts of the data, as well as some parameters that dictate missingness. The 
MCAR process on the right side of the expression simplifies by eliminating all depen-
dence on the realized data. In other words, the equation says that all participants have 
the same chance of missing values, and the parameters in φ define the overall probabili-
ties of missing data.

A directed acyclic graph is a useful graphical tool for representing the missing data 
mechanism in Equation 1.1 (Mohan, Pearl, & Tian, 2013; Thoemmes & Mohan, 2015). 
Figure 1.3a depicts an MCAR process involving a complete variable, X, an incomplete 
variable, Y, and a binary missing data indicator, MY. The white circle labeled Y repre-
sents the hypothetically complete variable (i.e., the combination of Y(mis) and Y(obs)), and 
the circle labeled Y * represents realized values of Y (i.e., Y * = Y when the missing data 

 FIGURE 1.3.   Directed acyclic graphs that depict missing data processes involving one com-
plete variable, X, one incomplete variable, Y, and a binary missing data indicator, MY. The white 
circle labeled Y represents the hypothetically complete variable, and the circle labeled Y * denotes 
the realized values of Y.
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indicator MY =	0 and is missing whenever MY =	1). Two features of the graph convey 
an MCAR mechanism. First, the absence of arrows pointing to MY indicates that all 
sources of missingness are contained in the indicator and no other variables predict 
nonresponse. Second, directed acyclic graph rules tell us that the unseen values of Y are 
unrelated to MY, because the MY → Y * ← Y path connecting the two variables is blocked 
by a third variable with two incoming arrows (Y * is a so- called “collider variable”).

Rubin’s missing data mechanisms can further be viewed as distributional assump-
tions for the missing values. The definition in Equation 1.1 implies that the missing and 
observed scores share the same overall (marginal) distributions. To illustrate this point, 
I randomly removed 50% of the artificial depression scores from the complete data set 
in Figure 1.2 (i.e., missingness was determined by an electronic coin toss). Figure 1.4
shows the scatterplot of the resulting data, with gray circles representing complete cases 
and black crosshairs denoting partial data records with perceived control over pain 
scores but no depression values. Figure 1.2 shows that missing scores are unsystemati-
cally dispersed throughout the entire distribution, such that the circles and crosshairs 
completely overlap, with no differences in their center, spread, or association. The graph 
highlights that the observed data are a simple random sample of the hypothetically 
complete data set.

 FIGURE 1.4.  Scatterplot showing an MCAR process where 50% of the scores are missing hap-
hazardly in a way that does not depend on the data. Circles denote complete observations, and 
crosshairs denote pairs with missing depression scores.
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Missing at Random

A missing at random mechanism states that the probability of missing values is related 
to the observed but not the missing parts of the realized data. The formal definition of 
this process is as follows:

	 ( ) ( )( ) ( )( )obs mis obsPr 1| , , Pr 1| , = = =φ φM Y Y M Y 	 (1.2)

The right side of the equation says that the would-be scores in Y(mis) carry no additional 
information about missingness above and beyond that in the observed data. The term 
missing at random is often misunderstood, because it seems to imply a haphazard pro-
cess instead of a systematic one. Rather, the phrase means that missingness is purely 
random after conditioning on or controlling for the observed data. Said differently, two 
participants with identical observed score profiles would share the same chance of miss-
ing values, whereas two participants with different observed score profiles would have 
different missingness rates. To clarify this idea, Graham (2009) refers to this mecha-
nism as conditionally missing at random (CMAR), and I often do so as well.

The directed acyclic graph in Figure 1.3b depicts an MAR process that features a 
directed arrow from X to MY. The graph shows that the unseen values in Y are poten-
tially related to missingness via the MY ← X → Y path (in the parlance of this graphical 
framework, Y and MY are said to be d-connected). Graphing rules further tell us that 
conditioning on X eliminates the association between Y and MY (i.e., satisfies a condi-
tionally MAR process) by closing the MY ← X → Y path. Procedurally, conditioning on X 
means that the missing data-handling procedure leverages all available data, including 
the partial records for observations with missing Y values. The three analytic pillars of 
this book—maximum likelihood, Bayesian estimation, and multiple imputation—do 
just that.

To further illustrate an MAR mechanism, I deleted 50% of the artificial depression 
scores in Figure 1.2 following a process where the chance of a missing value increased 
as perceived control over pain decreased (e.g., participants with little control over their 
pain were more likely to experience pain-related disruptions that could lead them to 
drop out of the study). The selection process was relatively strong, with the predicted 
probability of missing data increasing from about 16% at one standard deviation above 
the perceived control mean to 84% at one standard deviation below the mean. Figure 
1.5 shows the scatterplot of the data, with gray circles again representing complete cases 
and black crosshairs denoting partial data records with perceived control scores but no 
depression values. The figure clearly depicts a systematic process where missing scores 
are primarily located on the left side of the contour plot. Unlike Figure 1.4, the gray 
circles (cases with complete data on both variables) are no longer representative of the 
hypothetically complete data, because there are too many scores at the high end of the 
perceived control distribution and too few at the low end.

An MAR mechanism can also be viewed as a distributional assumption for the 
missing values. The definition in Equation 1.2 implies that the observed and unseen 
values of a variable share the same distribution after controlling for the observed values 
of other variables (i.e., the two sets of scores follow the same conditional distribution). 

8	 Applied Missing Data Analysis	



Cop
yri

gh
t ©

 20
22

 The
 G

uil
for

d P
res

s

Applied to the bivariate normal data in Figure 1.5, this assumption stipulates that the 
observed and missing depression scores are normally distributed around points on the 
regression line and share the same constant variation (i.e., the depression distribution 
is the same for any two individuals with the same perceived control over pain score, 
regardless of whether they have missing data). Visually, this feature is evident by the fact 
that the circles and crosshairs lock together like puzzle pieces around the regression line 
from the hypothetically complete data.

Viewing the MAR process as a distributional assumption provides intuition about 
the inner workings of contemporary analytic procedures. Although they do so in dif-
ferent ways, maximum likelihood, Bayesian estimation, and multiple imputation all 
attempt to infer the location of the missing values based on the corresponding observed 
data. Consider the task of imputing a missing depression score. Given a suitable esti-
mate of the regression line, the MAR process implies that imputations can be sampled 
from normal distributions centered along the regression line. To illustrate, Figure 1.6
shows the distribution of plausible imputations at three values of perceived control over 
pain. Candidate imputations fall exactly on the vertical hashmarks, but I added horizon-
tal jitter to emphasize that more scores are located at higher contours near the regression 
line. Randomly selecting one of the circles from each distribution generates an imputed 

 FIGURE 1.5.  Scatterplot showing an MAR process where 50% of the depression scores are 
missing for participants with low perceived control over pain values. Circles denote complete 
observations, and crosshairs denote pairs with missing depression scores.
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depression score (technically, imputations are not restricted to the circles displayed in 
the graph and could be selected from anywhere in the normal distribution, but you get 
the idea). In fact, Bayesian estimation and multiple imputation both invoke an iterative 
version of this exact procedure.

Finally, an MAR process is very general and readily extends to multivariate data, 
although it is more awkward to think about in this context. Returning to the data in 
Table 1.1, the mechanism must be viewed on a pattern- by- pattern basis. Considering the 
first row of data (and all other rows where only Y3 is missing), an MAR process requires 
that Y3’s missingness is fully explained by Y1 and Y2. Moving to the fourth row of data, 
the mechanism requires that the likelihood of a pattern where Y1 and Y3 are both miss-
ing depends only on Y2. Notice that this condition contradicts the statement for the first 
row, which allows missing values on Y3 to depend on Y1. As a final example, the mecha-
nism requires the chance of missing both Y1 and Y2 (the pattern in the bottom row of the 
table) to depend only on Y3. Again, parts of this proposition are at odds with conditions 
that govern other patterns. Despite its somewhat clunky construction with multivariate 
data, Little and Rubin (2020, p. 23) argue that a MAR process is a better approximation 
to reality than the simpler MCAR mechanism.
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 FIGURE 1.6.  Distributions of plausible depression imputations at three values of perceived 
control over pain. Candidate imputations fall exactly on vertical hashmarks, but I added hori-
zontal jitter to emphasize that more scores are located near the regression line.
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Missing Not at Random

A missing not at random mechanism (also referred to as a not missing at random pro-
cess) states that the probability of missing values is related to the observed and missing 
parts of the data. The formal definition of this mechanism is as follows.

	 ( ) ( )( )obs misPr 1| , ,= φM Y Y 	 (1.3)

Unlike the previous expressions, the conditional distribution of the missing data indi-
cators doesn’t simplify and features two distinct determinants of missingness. Under 
such a process, two participants with identical observed score profiles no longer have 
the same chance of a missing value, as the would-be scores themselves carry additional 
information above and beyond the observed data. Gomer and Yuan (2021) refer to Equa-
tion 1.3 as diffuse MNAR, because missingness depends on both components of the 
hypothetically complete data, and they define a focused MNAR process as one that 
depends only on the unseen values in Y(mis).

	 ( )( )misPr 1| ,= φM Y 	 (1.4)

Although there is no way to differentiate MNAR subtypes from the observed data, the 
authors argue that the distinction is important, because diffuse and focused processes 
can differentially impact one’s analysis results. I return to this issue in Chapter 9.

The directed acyclic graph in Figure 1.3c depicts a (diffuse) MNAR process involv-
ing the same variables as before. The graph suggests that the unseen values in Y are 
potentially related to missingness via the MY ← X → Y path and the Y → MY path. As 
before, conditioning on X closes the MY ← X → Y path, thereby eliminating part of the 
association between Y and its missingness indicator. However, the would-be values of 
Y still influence missingness via their direct pathway to MY. Graphing rules tell us that 
a pair of connected variables adjacent in a chain cannot be separated, so conditioning 
on the observed data does not eliminate the dependence between Y and its missing data 
indicator.

To further illustrate an MNAR mechanism, I deleted 50% of the artificial depres-
sion scores in Figure 1.2 following a process where participants with higher levels of 
depression were more likely to have missing values (e.g., those with acute symptoms 
would leave the study to seek treatment elsewhere). The selection process was relatively 
strong, with the predicted probability of missing data increasing from about 16% at 
one standard deviation below the depression mean to 84% at one standard deviation 
above the mean. Figure 1.7 shows the scatterplot of the data, with gray circles again 
representing complete cases and black crosshairs denoting partial data records with 
perceived control scores but no depression values. The figure illustrates a systematic 
process where missing scores are primarily located in the top half of the contour plot 
above the regression line. The gray circles (cases with complete data on both variables) 
are clearly unrepresentative of the hypothetically complete data.

Unlike the conditionally MAR mechanism, which stipulates that the observed 
and missing scores share the same distribution after controlling for other variables, 
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an MNAR process implies that the two sets of scores have different distributions. This 
situation is clear in Figure 1.7, where the vast majority of the missing scores are above 
the regression line, and the complete data are mostly below the line. This feature makes 
imputation considerably more difficult, because there are no data with which to esti-
mate the unique parameters of the missing data distribution. For example, leveraging 
the perceived control over pain scores alone would create imputations that fall on either
side of the regression line, and there is no way to formulate an appropriate adjustment 
without knowing the unseen depression values. As you will see, analytic procedures for 
MNAR processes (e.g., selection models or pattern mixture models) can only counteract 
this indeterminacy by invoking relatively strong assumptions about the unseen data.

Mechanisms and Inference

A subtle nuance about Rubin’s mechanisms is that they describe missingness in a specific 
data set; that is, the indicators in M are fixed at their realized values, and the definitions 
make no reference to missingness patterns or observed data that could arise from differ-
ent samples. Rubin’s (1976) seminal work clarifies that an MAR mechanism is necessary 
for obtaining valid maximum likelihood estimates (the same is true for Bayesian estima-

 FIGURE 1.7.  Scatterplot showing an MNAR process where 50% of the depression scores are 
missing for participants with high depression. Circles denote complete observations, and cross-
hairs denote pairs with missing depression scores.
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tion and multiple imputation), but this conclusion does not hold for standard errors and 
significance tests that rely on the frequentist framework and repeated sampling argu-
ments (Kenward & Molenberghs, 1998; Savalei, 2010).

Getting accurate measures of uncertainty under a particular process requires 
a stricter assumption that the same missingness process always generates data sets. 
Returning to Equation 1.2, valid inferences require the MAR definition to hold for any 
Y(obs) that you could have worked with, not just the Y(obs) in a particular sample of data. 
Statisticians refer to this condition as missing always at random (Bojinov, Pillai, & 
Rubin, 2020; Mealli & Rubin, 2016) or everywhere missing at random (Seaman et al., 
2013), and Mealli and Rubin (2016) define parallel conditions for MCAR and MNAR pro-
cesses known as missing always completely at random and missing not always at random, 
respectively. Because missingness mechanisms are so prevalent throughout the book, I 
refer to them by their simpler monikers, with the understanding that measures of uncer-
tainty and significance tests require slightly different definitions.

Ignorable and Nonignorable Missingness

The terms ignorable and nonignorable missingness are often used synonymously to 
refer to conditionally MAR and MNAR processes, respectively. In fact, these terms have 
a somewhat broader definition, although the distinction is relatively unimportant in 
practice. Rubin’s classification scheme features two models: the focal analysis model you 
would have estimated had the data been complete, and a model that describes the miss-
ingness mechanism. These models have parameters θ and φ, respectively. The param-
eters in φ, whatever they happen to be, are essentially a nuisance, because they are 
unrelated to the substantive research goals. A key question is, in what situations can 
we simply estimate θ from the observed data without worrying about or estimating the 
missingness model and the parameters in φ? This is the essence of ignorability.

The missingness model is said to be ignorable if (1) the missing values follow a 
conditionally MAR process, and (2) the nuisance parameters in φ carry no information 
about the focal parameters in θ (i.e., φ and θ are distinct). Bayesian analyses further 
require that the two models have independent prior distributions. As mentioned pre-
viously, the missing data indicators in M function as random variables that follow a 
distribution. The left side of the equation below is a shorthand way of writing the joint 
(multivariate) distribution of the observed data and the missing data indicators.

	 ( )( ) ( )( ) ( )( )obs obs obs, | , | , |f f f= ×θ φ φ θY M M Y Y 	 (1.5)

I use generic function notation f(∙) throughout the book to represent distributions in the 
abstract without specifying their type or form (e.g., “f of something” could be a normal 
curve, a binomial distribution). If the parameters in θ and φ are independent, applying 
rules of probability gives the factorization on the right side of the equation. The missing-
ness model is ignorable in this case, because f(M|Y(obs), φ) functions as a constant, and 
estimating the focal model parameters from the observed data gives the same results 
with or without this term. In contrast, the missingness model is said to be nonignorable 
if the missing values follow an MNAR process or the nuisance parameters in φ carry 
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information about the focal parameters in θ. In this situation, we can only get valid esti-
mates of θ by pairing the focal analysis model with an additional model for missingness 
(see Chapter 9).

Ignorability is ultimately something we just take on faith, because there is no 
way to evaluate either of its propositions. Referring to distinctness, (Schafer, 1997, 
p. 11) says, “In many situations this is intuitively reasonable, as knowing θ [the focal 
model’s parameters] will provide little information about ξ [the missingness model’s 
parameters] and vice-versa.” The MAR part of the assumption can be a bit trickier. Van 
Buuren (2012, p. 33) warns that “the label ‘ignorable’ does not mean that we can be 
entirely careless about the missing data,” and he goes on to emphasize that satisfying 
this assumption requires the missing data-handling procedure to condition on all the 
important determinants of missingness. The next three sections address this point in 
more detail.

1.4	 DIAGNOSING MISSING DATA MECHANISMS

Unfortunately, the observed data do not contain the necessary information to evaluate 
a conditionally MAR or MNAR mechanism, because both make propositions about the 
unseen scores—the former says the would-be values are unrelated to missingness after 
conditioning on the observed data, and the latter says they are related. Although meth-
odologists have proposed various diagnostic procedures for evaluating these conditions 
(Bojinov et al., 2020; Potthoff, Tudor, Pieper, & Hasselblad, 2006; Yuan, 2009a), the 
validity of contemporary missing data-handling procedures ultimately relies on untest-
able assumptions and our own expert knowledge about the data and possible reasons for 
missingness. This leaves an unsystematic MCAR process as the only mechanism with 
testable propositions.

In truth, evaluating whether missingness is consistent with an unsystematic pro-
cess isn’t necessarily useful, because contemporary methods do not require this strict 
assumption, and finding that haphazard missingness is (or is not) plausible does not 
change the recommendation to use these approaches. To this point, Raykov (2011, 
p. 428) suggests that “the desirability of the MCAR condition has been frequently over-
rated in empirical social and behavioral research,” and I couldn’t agree more. Never-
theless, the logic of evaluating an MCAR process warrants brief discussion, because 
applications of MCAR tests abound in published research articles, and it is important to 
understand what these tests do and do not tell us about the missing data.

As explained previously, an MCAR process implies that missing and observed scores 
share the same overall (marginal) distributions; that is, even without conditioning on 
the observed data, the observed and would-be scores have identical means, variances, 
and associations with other variables. Kim and Bentler (2002) refer to this condition as 
homogeneity of means and covariances. Methodologists have proposed numerous proce-
dures for evaluating the MCAR mechanism (Chen & Little, 1999; Jamshidian & Jalal, 
2010; Kim & Bentler, 2002; Little, 1988b; Muthén, Kaplan, & Hollis, 1987; Park & Lee, 
1997; Raykov & Marcoulides, 2014), most of which involve comparing features of the 
observed data across different missing data patterns. I focus on two simple approaches 

14	 Applied Missing Data Analysis	



Cop
yri

gh
t ©

 20
22

 The
 G

uil
for

d P
res

s

that consider group mean differences, as these methods enjoy widespread use and are 
readily available in statistical software.

Univariate Pattern Mean Differences

Perhaps the simplest way to check for an unsystematic process is to form groups of cases 
with observed or missing scores on a variable Yv and examine mean differences on other 
variables (Dixon, 1988; Raykov & Marcoulides, 2014). For lack of a better term, I refer to 
this as the pattern mean difference approach. Returning to the hypothetical data in Table 
1.1, this method compares whether the M1 groups differ on Y2 or Y3, the M2 groups differ 
with respect to Y1 or Y3, and the M3 groups differ on Y1 or Y2.

Returning to the artificial data in Figure 1.4, the pattern mean difference approach 
creates a missing data indicator that codes whether depression scores are missing or 
observed and compares the perceived control over pain group means. The n(obs) = 134 
observations with depression scores had a mean of M(obs) = 20.08, and the n(mis) = 141 
cases with missing data had an average of M(mis) = 20.52. This difference equates to less 
than one-tenth of a standard deviation unit, which is well below Cohen’s (1988) small 
effect size benchmark of |d| > 0.20. Because I created missing values by randomly delet-
ing half the scores, it isn’t surprising that the mean difference is nonsignificant, t(273) 
= .71, p = .48. Raykov (2011) explains that the absence of group differences is necessary 
but insufficient for demonstrating a purely random process. As such, a safe interpreta-
tion is that the data do not contain evidence that refutes the MCAR mechanism.

It is instructive to apply the pattern mean difference approach to data that are not 
MCAR. Returning to the artificial data in Figure 1.5, participants with low perceived 
control over pain were more likely to have missing depression scores. In this case, 
observations with and without depression scores have a perceived control mean of M(obs) 
= 23.27 and M(mis) = 17.19, respectively. This difference is equivalent to 1.43 standard 
deviation units (well above Cohen’s large effect size benchmark of |d| > 0.80) and is 
statistically significant, t(273) = –11.82, p < .001. Importantly, the significant differ-
ence implies there is evidence against a purely unsystematic process, but it says nothing 
about whether a conditionally MAR process is plausible. As a final example, reconsider 
the MNAR mechanism from Figure 1.7, where participants with elevated depressive 
symptoms were more likely to have missing depression scores. Despite a very different 
underlying process, the pattern mean difference is significant and in the same direction, 
M(obs) = 21.47 versus M(mis) = 19.13, t(273) = –3.80, p < .001. This example highlights that 
the observed data cannot differentiate MAR and MNAR processes. A significant group 
mean difference implies there is evidence against an MCAR process and nothing more.

Significance tests of pattern mean differences come with a few important caveats. 
First, a large data set with many variables can yield a staggering number of tests, and 
correlations among variables allow a univariate difference to masquerade as several sig-
nificant comparisons. Raykov, Lichtenberg, and Paulson (2012) outline a multiple com-
parison procedure for this situation, and the multivariate tests of group differences are 
another option for mitigating false flags (Kim & Bentler, 2002; Little, 1988b). Second, 
significance tests often suffer from very low power, making them dubious tools for argu-
ing in favor of an unsystematic missingness process. In particular, the power of such 
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tests will be at a maximum when a variable has 50% missing data, because its missing-
ness indicator has equal group sizes. Conversely, lower (or higher) missing data rates 
cause unbalanced group sizes and lower power. To illustrate, consider the conditionally 
MAR process depicted in Figure 1.5. Achieving power equal to .80 with a 50% missing 
data rate requires a standardized pattern mean difference of |d| > 0.34 or larger (a small 
effect size). Had I instead deleted 10% of the data (i.e., group sizes of n(obs) = 247 and n(mis) 
= 28), the effect size requirement to achieve the same power increases to |d| > 0.56 or 
larger (a medium effect size). Finally, a pattern mean difference does not automatically 
imply that the variable in question is a source of nonresponse bias, as the variable’s cor-
relation with the focal analysis variables also plays an important role (Collins, Schafer, 
& Kam, 2001). I return to this point in Section 1.5.

Little’s MCAR Test

Little (1988b) proposed a multivariate extension of the pattern mean difference approach 
that simultaneously evaluates mean differences across a set of variables. The test defines 
G groups of cases that share the same missing data pattern, and it computes the arithme-
tic means of each pattern’s observed data. These pattern-specific means are then com-
pared to maximum likelihood estimates of the grand means. Chapter 3 gives a detailed 
description of maximum likelihood missing data handling, but for now it is sufficient 
to know that the estimator leverages the entire sample’s observed data without discard-
ing any information. Finally, a test statistic uses the maximum likelihood estimate of 
the variance–covariance matrix to standardize differences between the pattern-specific 
means and the grand means. The sum of these standardized differences should be rela-
tively small and close to 0 if scores are MCAR.

Little’s test statistic is as follows:

	 ( ) ( )1
L

1

ˆˆ ˆ
G

g g g g g g
g

T n −

=

′= − −∑ μ S μY Y 	 (1.6)

where G is the number of missing data patterns, ng is the number of cases in missing 
data pattern g, Yg contains the arithmetic means for that group, and μ̂g and Ŝg contain 
the rows and columns of μ̂ and Ŝ (the maximum likelihood estimates) that correspond 
to the observed variables in Yg. The parentheses contain deviations between pattern g’s 
arithmetic averages and the corresponding grand means, and these are squared (and 
summed) via matrix multiplication. Multiplying by the inverse of the covariance matrix 
(the matrix analogue of division) standardizes the discrepancies, such that the numeri-
cal value of TL is a weighted sum of G squared z-scores. If values are missing completely 
at random, TL is approximately distributed as a chi-square statistic with Svg– V degrees 
of freedom, where vg is the number of observed scores in pattern g, and V is the total 
number of variables. Consistent with the mean difference approach, a significant test 
statistic suggests that missingness is not purely random.

To illustrate Little’s test, reconsider the conditionally MAR process depicted in 
Figure 1.5. In practice, the primary motivation for using Little’s test is to evaluate a 
larger number of variables in Yg, but a bivariate application is useful for illustrating the 

16	 Applied Missing Data Analysis	



Cop
yri

gh
t ©

 20
22

 The
 G

uil
for

d P
res

s

mechanics of the equation. To begin, the maximum likelihood estimates of the grand 
means and variance–covariance matrix are as follows:

	
−   

= =   −   
μ S

20.31 27.27 13.80
    

14.29 13
ˆ ˆ

.80 36.15
	 (1.7)

These means are the benchmark against which to compare pattern-specific means. There 
are just two missing data patterns in this example: n(obs) = 141 observations have scores 
on both variables (i.e., v1 = 2), and n(mis) = 134 cases have missing depression scores (i.e., 
v2 = 1). The pattern-specific arithmetic means for the two groups are as follows:

	 1 2

23.27 17.19
    

12.79 NA

   
= =   
   

Y Y 	 (1.8)

Substituting the estimates into Equation 1.6 gives the following test statistic:

 
 
	

( )

L

2

23.27 20.31 27.27 13.80 23.27 20.31
141

12.79 14.29 13.80 36.15 12.79 14.29

17.19 20.31
    1 34 98.27

27.27

T
′   −         

= × − −               −            

−
+ × =

	 (1.9) 
 

If an unsystematic process generated the data, this test statistic should approximate a 
chi-square statistic with Svg– V = (2 + 1) – 2 = 1 degrees of freedom. The test is statisti-
cally significant, TL(1) = 98.27, p < .001, indicating that the MCAR mechanism is not 
plausible for these data. In a multivariate application with more than two variables, a 
significant test statistic indicates that two or more patterns differ, but the test gives no 
indication about which variables might be responsible.

1.5	 AUXILIARY VARIABLES

A conditionally MAR mechanism will be our default assumption until Chapter 9. To 
refresh, this process stipulates that the would-be scores in Y(mis) are unrelated to whether 
a participant has missing values after conditioning on the observed data. There are at least 
two ways this assumption could be violated. First, the unseen scores themselves might 
predict missingness above and beyond the observed data, as in Figure 1.3c. The only 
way to counteract nonresponse bias in this scenario is to fit a specialized model that 
pairs the focal analysis with a nuisance model for missingness (e.g., a selection model or 
pattern mixture model). Alternatively, the unseen scores may be associated with miss-
ingness, because the missing data-handling procedure simply failed to condition on 
certain variables. In this situation, the MAR assumption could be satisfied by controlling 
for additional or different variables. This scenario is not hard to imagine in practice, as 
real-world data sets often have hundreds of variables, and controlling for every observa-
tion is infeasible. For lack of a better term, I refer to this situation as MNAR by omission.

To illustrate an MNAR-by-omission process, suppose that the focal analysis model 
is the linear regression of Y on X:
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	 0 1i i iY X= β + β + ε 	 (1.10)

Moreover, suppose that the outcome is missing due to another measured variable A that 
also correlates with Y. Figure 1.8a shows a directed acyclic graph that depicts theoretical 
associations among the three variables and the missing data indicator, MY. As before, Y 
represents the hypothetically complete variable, and Y * represents realized values of Y 
(i.e., Y * equals Y when the missing data indicator MY = 0 and is missing whenever MY = 
1). Graphing rules imply that Y is potentially related to missingness via two pathways: 
MY ← X → Y and MY ← A → Y.

As explained previously, directed acyclic graphs clarify that conditioning on or 
controlling for the middle variable in a path eliminates the dependency between the two 
outer variables. The regression model conditions on X and therefore eliminates part of 
the association between Y and MY by closing the MY ← X → Y path. However, Y and MY 
are still related via the MY ← A → Y path, so the analysis induces an MNAR-by-omission 
process, because it fails to condition on A. Whether the open path introduces substantial 
bias depends the magnitude of the association between A and MY and A and Y (Collins et 
al., 2001), but the analysis is nevertheless at odds with the MAR assumption.

Perhaps the simplest way to condition on A is to simply include it as an additional 
covariate in the analysis model as follows:

	 0 1 2i i i iY X A= β + β + β + ε 	 (1.11)

This analysis is consistent with an MAR process, because it eliminates all sources of 
dependency between Y and MY. However, the model achieves this desirable status by 

 FIGURE 1.8.   Directed acyclic graphs that depict missing data processes involving one com-
plete variable, X, one incomplete variable, Y, a binary missing data indicator, MY, and an auxiliary 
variable A. The white circle labeled Y represents the hypothetically complete variable, and the 
circle labeled Y * denotes the realized values of Y.

(a)  Category A (c) Category C(b)  Category B 
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modifying the meaning of a focal parameter—the β1 coefficient is a now partial slope 
that reflects the net influence of X above and beyond that of A, a variable that wasn’t 
slated to appear in the analysis had the data been complete. Chapters 3 and 5 describe 
better ways to condition on A that don’t involve modifying the focal analysis model, but 
this example nevertheless highlights the importance of conditioning on variables that 
may not be part of the original analysis plan.

Inclusive Analysis Strategy

The possibility of an MNAR-by-omission process has prompted methodologists to rec-
ommend a so-called inclusive analysis strategy that introduces auxiliary variables into 
the focal analysis model or into the imputation process (Collins et al., 2001; Rubin, 
1996; Schafer, 1997; Schafer & Graham, 2002). An auxiliary variable is an extraneous 
variable that carries important information for missing data handling but is not part of 
the focal analysis (or analyses). Conditioning on such variables can fine-tune a missing 
data analysis, either by reducing nonresponse bias or improving precision. Collins et al. 
(2001) categorize candidate variables into three buckets: variables that (1) correlate with 
an analysis variable Y and its missingness indicator MY, (2) correlate with an analysis 
variable but not its missingness indicator, and (3) correlate with the missing data indica-
tor but not the analysis variable. The directed acyclic graphs in Figure 1.8 depict these 
patterns of associations.

The number of variables in many data sets is often so large that an overinclusive 
strategy is not viable. Reducing a large set of candidate auxiliary variables into one or 
two principal components is one way to attack this problem (Howard, Rhemtulla, & 
Little, 2015), but a more tailored approach that selects a small handful of variables often 
works just as well. Conditioning on category A variables like the one in Figure 1.8a is 
the top priority, because doing so can improve power and reduce nonresponse bias that 
results from an MNAR-by-omission process. Moreover, preference should be given to 
auxiliary variables with the strongest semipartial correlations, as variables that account 
for unique variation in the missing variables have the most to offer. Next, condition-
ing on category B auxiliary variables does not affect bias, but it can improve power by 
leveraging additional sources of correlation. Again, an auxiliary variable’s semipartial 
association with the incomplete variables is more important than its bivariate correla-
tion. Finally, conditioning on category C auxiliary variables offers no benefits at all. It 
might seem counterintuitive that ignoring a correlate of missingness (e.g., a variable that 
exhibits a pattern mean difference) doesn’t introduce bias, but the directed acyclic graph 
in Figure 1.8c clarifies that an MNAR-by-omission process isn’t possible, because A is 
not located on a path that connects Y to MY. The figure reinforces my earlier statement 
that a pattern mean difference doesn’t necessarily signal a source of nonresponse bias.

The utility of an auxiliary variable ultimately boils down to the magnitude of its 
semipartial correlations with the incomplete analysis variables, as failing to condition 
on extra variables with weak correlations is unlikely to introduce bias, nor is including 
such variables going to replace a meaningful amount of missing information. Raykov 
and West (2015) described a latent variable modeling approach to estimating semipartial 
correlations with a set of candidate auxiliary variables. Of course, any general-purpose 
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statistical software application can estimate these associations, but most do so after 
discarding incomplete data records. The advantage of Raykov and West’s approach is 
that it leverages maximum likelihood missing data handling (or alternatively, Bayesian 
estimation). Again, we don’t know how maximum likelihood estimation works yet, but 
for now it is sufficient to know that the estimator leverages the entire sample’s observed 
data without discarding any information.

A respectable semipartial correlation signals an auxiliary variable that contains 
unique information about the missing values above and beyond that already contained 
in the analysis. How large does this correlation need to be in order to reap the benefits 
of conditioning on the additional variable or suffering the consequences of ignoring 
it? Simulation studies in Collins et al. (2001) provide some insights. The Collins et al. 
article examined auxiliary variables with semipartial correlations equal to .32 and .72. 
Not surprisingly, failing to condition on a variable with a very strong correlation usu-
ally produced a bias-inducing MNAR-by-omission process. In contrast, ignoring a vari-
able with the smaller correlation often gave acceptable parameter estimates with little 
to no bias. Based on these results, it seems reasonable to focus on auxiliary variables 
with semipartial correlations at least as strong as Cohen’s (1988) medium effect size 
benchmark of ±0.30. Fortunately, we don’t need to be too discerning about this cutoff, 
because these simulations showed no serious consequences of overfitting with a large 
set of uncorrelated variables. Nevertheless, limiting the number of auxiliary variables 
is often necessary in practice, because modeling strategies for introducing these extra 
variables can be prone to convergence failures (e.g., the saturated correlates model; Gra-
ham, 2003).

Finally, although the literature has long favored an inclusive strategy (Collins et al., 
2001; Rubin, 1996; Schafer, 1997; Schafer & Graham, 2002), it is hypothetically possible 
that conditioning on an auxiliary variable could enhance rather than reduce nonre-
sponse bias. This could happen, for example, if an auxiliary variable’s correlation with 
an analysis variable and its missingness indicator is fully explained by an unmeasured 
latent variable. It is unclear how often the constellation of associations needed to cause 
this problem actually occurs in practice, but interested readers can find an illustration 
of this phenomenon in Thoemmes and Rose (2014).

1.6	 ANALYSIS EXAMPLE: PREPARING FOR MISSING 
DATA HANDLING

In practice, assuming a conditionally MAR process is usually a good starting point, 
because this mechanism is more realistic than a purely unsystematic one. Moreover, 
the three pillars of this book—maximum likelihood, Bayesian estimation, and mul-
tiple imputation—naturally leverage this assumption by default. This section serves as a 
bookend that integrates previous ideas and illustrates two steps to prepare for an MAR-
based missing data analysis: comparing participants with and without missing data, and 
identifying potential auxiliary variables.

To provide a substantive context, I use the chronic pain data on the companion 
website to illustrate a regression analysis with missing data. The data set includes psy-
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chological correlates of pain severity (e.g., depression, pain interference with daily life, 
perceived control) for a sample of N = 275 individuals with chronic pain. Because the 
missing data mechanism is an assumption for a specific analysis, I build the example 
around a linear regression model where depressions scores are a function of pain inter-
ference with daily life activities and a binary severe pain indicator (0 = no, little, or mod-
erate pain, 1 = severe pain).

	 ( ) ( )0 1 2i i iDEPRESS INTERFERE PAIN= β + β + β + ε 	 (1.12)

Approximately 7.3% of the binary pain ratings are missing, and the missing data rates 
for the depression and pain interference scales are 13.5 and 10.5%, respectively. I use 
these same variables in Chapter 10 to illustrate missing data handling for a mediation 
analysis, and I incorporate auxiliary variables from this illustration.

Identifying Correlates of Missingness

Researchers routinely use the pattern mean difference approach to explore whether 
cases with missing values differ from those with observed data. To illustrate the pro-
cedure, I created three missing data indicators that code whether the analysis variables 
are missing. As before, each dummy code equals 0 if a score is observed and 1 if it is 
missing. There is no need to examine pattern mean differences for variables already in 
the analysis, because contemporary missing data-handling approaches automatically 
condition on this information. Instead, I focus on six continuous variables outside the 
analysis model: age, exercise frequency, anxiety, stress, perceived control over pain, 
and psychosocial disability (a construct capturing pain’s impact on emotional behaviors 
such as psychological autonomy and communication, emotional stability, etc.). Three of 
the candidate variables also have missing data, but incomplete auxiliary variables can 
still be beneficial as long as their scores are mostly observed whenever the analysis vari-
ables are missing (Enders, 2008).

Statistical significance tests are not that valuable for this application, because they 
lack power due to the highly unbalanced group sizes (e.g., based on of n(obs) = 238 and 
n(mis) = 37, the depression scale requires a standardized mean difference effect size of 
nearly 0.50 to achieve .80 power). Instead, Table 1.2 gives the standardized mean dif-
ference effect size for each indicator and auxiliary variable. The pain severity indicator 
produced three comparisons that exceeded Cohen’s (1988) small effect size benchmark 
of ±0.20 (exercise frequency, anxiety, and stress), and the depression indicator produced 
a single difference of this magnitude (anxiety). Researchers often use logistic regression 
to predict missingness indicators from study variables, so I also applied this procedure 
to the example. The logistic analyses further revealed that the set of auxiliary variables 
explained about 3–4% of the variation in the severe pain and depression indicators, with 
the anxiety scale producing the largest partial slope.

Before going further, it is useful to step back and take stock of what we can and can-
not learn from mean comparisons. First, we can conclude that an unsystematic MCAR 
process is not plausible for the linear regression analysis—it may be reasonable for a dif-
ferent analysis with a different configuration of variables, but not for this model. Second, 
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univariate mean differences do not condition on the focal variables, so the effect sizes 
in Table 1.2 does not say whether a given auxiliary variable predicts missingness above 
and beyond the variables already in the analysis. Finally, mean differences alone do not 
signal a problem, as a bias-inducing MNAR-by-omission process also requires salient 
semipartial correlations with the analysis variables.

Identifying Correlates of Incomplete Variables

Next, I used Raykov and West’s (2015) latent variable model to estimate the semipartial 
correlations between the auxiliary variables and the three analysis variables (the same 
analysis could be performed in standard statistical software using pairwise deletion). 
Table 1.3 gives the semipartial correlations and their significance tests. As suggested 
previously, semipartial correlations in the neighborhood of Cohen’s (1988) medium 
effect size benchmark of ±0.30 are good candidates for auxiliary variables, as ignoring 
such variables could create a bias-inducing MNAR-by-omission process if the missing 
data rates are large enough (Collins et al., 2001). This rule of thumb selects three vari-
ables: anxiety, stress, and perceived control over pain. Following Collins et al.’s typol-
ogy, the anxiety scale is a “category A” auxiliary variable, because it predicts missing-
ness and uniquely correlates with depression scores. Stress and perceived control over 
pain can be considered “category B” variables, because they correlate with the analysis 
variables but do not predict their missingness. Note that these classifications are not 
perfect, because the patterns of correlations differ across variables (e.g., anxiety is a 
“category C” variable for the severe pain dummy code, because it predicts missingness 
but does not uniquely correlate with pain severity ratings).

Considered as a whole, the analysis results in this section offer a simple prescrip-
tion: Estimate the regression model in a way that conditions on three extraneous vari-
ables that would not have appeared in the analysis had the data been complete. Doing so 
makes the conditionally MAR process more plausible and could improve power. Select-
ing additional variables based on their semipartial correlations could identify more vari-
ables than are necessary, because these bivariate associations ignore collinearity among 
candidate auxiliary variables. With few exceptions (e.g., an excessively large number 

TABLE 1.2.  Standardized Mean Differences Comparing 
Observed and Missing Cases on Six Auxiliary Variables

Auxiliary variable

Missing data indicators

Pain Pain interference Depression

Age   0.03 –0.07   0.00

Exercise Frequency   0.30 –0.16 –0.13

Anxiety   0.43   0.11   0.33

Stress   0.24   0.00 –0.08

Control   0.07 –0.06   0.09

Disability –0.14 –0.10 –0.01
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of auxiliary variables, a peculiar pattern of associations; Hardt, Herke, & Leonhart, 
2012; Thoemmes & Rose, 2014), there is usually no harm in casting a broad net and 
being overly inclusive, but you may need to restrict the size of the auxiliary set if the 
number of candidate variables is very large (as mentioned previously, some methods for 
introducing auxiliary variables are prone to convergence failures). My own experience 
suggests the payoff for adopting an inclusive analysis strategy is somewhat variable; 
leveraging additional variables sometimes affects noticeable changes in the estimates 
and standard errors, and other times it doesn’t.

1.7	 OLDER MISSING DATA METHODS

I’ve repeatedly referenced the analytic trio that forms the basis of this book: maximum 
likelihood, Bayesian estimation, and multiple imputation. These methods have been the 
“state of the art” for some time (Schafer & Graham, 2002), because they are capable of 
producing valid estimates and inferences in a wide range of applications. The literature 

TABLE 1.3.  Semipartial Correlations between Analysis Variables 
and Six Candidate Auxiliary Variables

Variable Est. SE z p

Depression|Interference and Severe Pain

Age –.20 .06 –3.31 < .001

Exercise Frequency –.12 .05 –2.35 .02

Anxiety   .52 .05 10.84 < .001

Stress   .46 .05   9.44 < .001

Control –.23 .05 –4.27 < .001

Disability   .32 .06   5.61 < .001

Interference|Depression and Severe Pain

Age   .04 .06   0.73 .47

Exercise Frequency –.20 .06 –3.59 < .001

Anxiety   .06 .05   1.16 .25

Stress   .02 .05   0.31 .75

Control –.30 .05 –5.64 < .001

Disability   .12 .06   2.00 .05

Severe Pain|Depression and Interference

Age   .05 .06   0.86 .39

Exercise Frequency –.13 .05 –2.53 .01

Anxiety –.05 .06 –0.85 .39

Stress   .04 .06   0.73 .46

Control   .01 .05   0.14 .89

Disability   .09 .06   1.59 .11
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describes numerous other approaches to missing data problems, some of which have 
enjoyed widespread use, while others are now little more than a historical footnote. 
This section describes a small collection of strategies you may still encounter in pub-
lished research articles or statistical software packages: listwise and pairwise deletion, 
arithmetic mean imputation, regression imputation, stochastic regression imputation, 
and last observation carried forward imputation. These methods deal with missing data 
either by removing cases or by filling in the missing values with a single set of replace-
ment scores (a process known as single imputation). Except for stochastic regression 
imputation, these methods are potentially problematic, because they invoke restrictive 
assumptions about the missing data process or introduce bias regardless of mechanism. 
In contrast, stochastic regression imputation gives valid estimates with a conditionally 
MAR process, but it inappropriately shrinks standard errors. I return to the artificial 
data in Figure 1.5 to illustrate these older approaches. To refresh, the scatterplot depicts 
a conditionally MAR process where participants with low perceived control over their 
pain were more likely to have missing depression scores.

Listwise and Pairwise Deletion

Listwise deletion (also known as complete-case analysis) discards the data for any case 
that has one or more missing values. The primary benefit of this approach is conve-
nience, as restricting analyses to the complete cases eliminates the need for special-
ized software. In contrast, pairwise deletion (also known as available-case analysis) 
mitigates the loss of data by eliminating data records on an analysis-by-analysis basis; 
a prototypical example is a correlation matrix with each of its elements estimated from 
different subsample of cases. Reviews of published research articles suggest that dele-
tion methods are quite common (Bodner, 2006; Jeličić, Phelps, & Lerner, 2009; Peugh 
& Enders, 2004; Wood, White, & Thompson, 2004), despite being characterized as 
being “among the worst methods available for practical applications” (Wilkinson & 
Task Force on Statistical Inference, 1999, p. 598).

Deletion methods have two important shortcomings: They reduce power and require 
an unsystematic MCAR mechanism where missingness is unrelated to the data. To illus-
trate the impact of the missing data process, reconsider the artificial data in Figure 1.5. 
The black crosshairs denote partial data records with perceived control scores but no 
depression values. Figure 1.9 shows the scatterplot after from removing the observa-
tions with missing depression scores. The gray contour rings convey the perspective of 
a drone hovering over the peak of the bivariate normal population data. As you can see, 
the complete score pairs are not dispersed throughout the entire range of the contour 
rings, and the data overrepresent the lower right quadrant of population distribution 
and underrepresent the upper left quadrant. As a result, the mean of the complete cases 
(the black dot at the center of the data) is too high along the horizontal axis (perceived 
control over pain) and too low along the vertical axis (depression). Not surprisingly, the 
systematic absence of scores from one area of the contour plot also restricts variation 
and distorts measures of association.

While the literature generally derides deletion methods, there are a few situations 
where a complete-case analysis is ideal. One such scenario occurs with linear regression 
models where missing values are relegated to the outcome and missingness is due to the 
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predictors, in which case deleting incomplete data records gives the optimal maximum 
likelihood estimates (Glynn & Laird, 1986; Little, 1992; von Hippel, 2007). The situa-
tion is more complicated with incomplete predictors, but deletion generally works well 
if missingness is unrelated to the dependent variables. This includes an MAR process 
where a covariate is missing as a function of another predictor, as well as an MNAR 
mechanism where missingness is related to the would-be values of a covariate (White 
& Carlin, 2010). A complete- case analysis can also provide optimal estimates of logistic 
regression slope coefficients in a more limited number of scenarios (Vach, 1994; van 
Buuren, 2012, p. 48).

Arithmetic Mean Imputation

Arithmetic mean imputation (also known as mean substitution) is a single imputation 
approach that fills in a variable’s missing values with the average of its complete scores. 
This method has no theoretical justification and distorts parameter estimates under any 
missing data process. To illustrate why this is the case, Figure 1.10 shows the scatter-
plot of the artificial data after filling in the missing depression scores with an average 
of the observed scores. The gray circles in the plot represent the complete data, and the 
black crosshairs along a horizontal line denote score pairs with imputed data. Mean 

 FIGURE 1.9.  Scatterplot showing data points that remain after applying listwise deletion to 
an MAR process where 50% of the depression scores are missing for participants with lower 
perceived control over pain. The black circle denotes the means of the complete observations.
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imputation recoups the full set of perceived control scores, but it does a terrible job of 
preserving the depression distribution. As you might expect, imputing missing scores 
with values at the center of the distribution artificially reduces variability and attenu-
ates measures of association (mathematically, each missing value contributes a zero to 
the sum of squares and sum of cross- products terms). If you focus on just the imputed 
score pairs, you’ll notice that their correlation necessarily equals 0, because depression 
scores are constant. As such, you can think of mean imputation as filling in the data 
with scores that have no variation and no correlation with other variables. If you were 
going to be stranded on a desert island with only one missing data- handling procedure 
in your analytic suitcase, this is not the one you’d choose for your 3-hour tour.

A popular variation of mean imputation appears with questionnaire data where 
multiple items tap into different aspects of the same construct. For example, the contin-
uous depression scores in the previous scatterplots result from summing item responses 
measuring sadness, lack of motivation, sleep difficulties, feelings of low self-worth, and 
so on. A common way to deal with item-level missing data is to compute a prorated 
scale score that averages the available item responses. For example, if a participant 
answered four out of six depression items, the prorated scale score would be the aver-
age of just four responses. The missing data literature often describes this procedure as 

 FIGURE 1.10.  Scatterplot showing the data that result from applying arithmetic mean impu-
tation to an MAR process where 50% of the depression scores are missing for participants with 
lower perceived control over pain. The black crosshairs denote data records with perceived con-
trol scores and imputed depression values.
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person mean imputation, because it is equivalent to imputing missing item responses 
with the average of each participant’s observed scores (Huisman, 2000; Peyre, Leplege, 
& Coste, 2011; Roth, Switzer, & Switzer, 1999; Sijtsma & van der Ark, 2003). Like its 
between-person counterpart, within-person mean imputation has serious limitations 
that should deter researchers from using it. In particular, the method assumes an unsys-
tematic missingness process and requires that all intrascale means and correlations are 
the same (Graham, 2009; Mazza, Enders, & Ruehlman, 2015; Schafer & Graham, 2002).

Regression Imputation

Regression imputation (also known as conditional mean imputation) replaces miss-
ing values with predicted scores from a regression equation. Regression imputation has 
a long history that dates back more than 60 years (Buck, 1960), and the basic idea is 
intuitively appealing: Variables tend to be correlated, so replacing missing values with 
predicted scores borrows important information from the observed data. Although this 
idea makes good sense, the resulting imputations can introduce substantial bias. The 
nature and magnitude of these biases depend on the missing data mechanism and vary 
across different estimands.

Regression imputation requires regression models that predict the incomplete vari-
ables from the complete variables. A complete-case analysis can generate the necessary 
estimates, as can maximum likelihood estimation (e.g., so-called “EM imputation”; von 
Hippel, 2004). Returning to the artificial data in Figure 1.5, imputation requires the 
regression of depression on perceived control. The following equation generates the pre-
dicted scores that serve as imputations:

	 ( ) ( )= γ + γ0 1mis
ˆ ˆ iiDEPRESS CONTROL 	 (1.13)

I use the γ symbol throughout the book to reference coefficients that are not part of the 
focal analysis, and the γ’s in this equation are meant to emphasize that the regression 
model is a device for imputing the data. The focal analysis could be something entirely 
different (e.g., a correlation; the regression of perceived control on depression). The logic 
of regression imputation is largely the same with multivariate data, but the procedure 
is more cumbersome to implement, because each missing data pattern requires its own 
regression equation.

Figure 1.11 shows the scatterplot of the artificial data after filling in the missing 
depression scores with predicted values, with gray circles again representing the complete 
cases and black crosshairs denoting score pairs with imputed data. As you can see, the 
procedure recoups the full data set, but it does a subpar job of preserving the depression 
distribution. In particular, the imputed values lack variation, because they fall directly on 
the regression line. This feature also implies that the imputed score pairs have a correla-
tion equal to 1. In effect, regression imputation suffers from the opposite problem as mean 
imputation, because it replaces missing values with perfectly correlated scores.

As mentioned previously, a complete-case analysis or maximum likelihood estima-
tion can generate the coefficients for regression imputation. The latter option warrants a 
brief discussion, because it often confuses researchers into thinking they are applying a 
more sophisticated procedure than they are. This so-called “EM imputation” procedure 
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first uses maximum likelihood estimation (via the expectation maximization, or EM 
algorithm) to estimate the mean vector and covariance matrix. So far, so good, as these 
estimates are accurate if scores are conditionally MAR. The problem arises in the next 
step, where the procedure uses elements in μμ̂ and SŜ to construct regression equations 
that replace the missing observations with predicted values like those in Figure 1.11. 
Researchers sometimes characterize this method as maximum likelihood estimation 
when all they are really doing is using maximum likelihood to get an accurate regres-
sion equation with which to destroy the data. Interested readers can consult von Hippel 
(2004) for a thorough take-down of this approach, which is available in the SPSS Miss-
ing Values Analysis module, among others.

Stochastic Regression Imputation

Stochastic regression imputation also uses regression equations to predict incomplete 
variables from complete variables, but it takes the additional step of augmenting each 
predicted score with a random noise term from a normal distribution. Adding these 
residuals to the predicted values restores lost variability to the data and effectively elimi-
nates the biases associated with standard regression imputation schemes. In fact, sto-

 FIGURE 1.11.  Scatterplot showing the data that result from applying regression imputation 
to an MAR process where 50% of the depression scores are missing for participants with lower 
perceived control over pain. The black crosshairs denote data records with perceived control 
scores and imputed depression values.

0 10 20 30 40

0
5

10
15

20
25

30
35

0 10 20 30 40

0
5

10
15

20
25

30
35

Perceived Control Over Pain

D
ep

re
ss

io
n

28 APPLIED MISSING DATA ANALYSIS



Cop
yri

gh
t ©

 20
22

 The
 G

uil
for

d P
res

s

chastic regression imputation is the only procedure in this section that is generally capa-
ble of producing unbiased parameter estimates when scores are conditionally MAR. As 
you will see later in the book, the core idea behind stochastic regression imputation—an 
imputation equals predicted value plus noise—resurfaces with Bayesian estimation and 
multiple imputation. These procedures use iterative algorithms to generate imputations 
over many alternate estimates of regression model parameters, but they are fundamen-
tally sophisticated relatives of stochastic regression imputation.

Applying stochastic regression imputation to the bivariate data in Figure 1.6 again 
requires the regression of depression on perceived control. The residual variance from 
this regression plays an important role, because it defines the spread of the random 
noise terms. As before, substituting a participant’s observed data into the right side of 
a regression equation gives the predicted value of the missing data point. Next, Monte 
Carlo computer simulation creates a synthetic residual term by drawing a random num-
ber from a normal distribution with a mean equal to 0 and spread equal to the residual 
variance estimate. Each imputation is then the sum of a predicted value and random 
noise term.

	 ( ) ( )0 1mis
ˆ ˆ i iiDEPRESS CONTROL= γ + γ + ε 	 (1.14)

	 ( )2
1 0 ˆ  ,i N εε ~ σ 	

The bottom row of the expression says that residuals are sampled from a univariate 
normal curve, and the dot accent on εi indicates that this is a synthetic value created by 
Monte Carlo computer simulation.

I previously introduced the possibility of drawing replacement scores from a nor-
mal curve, and Figure 1.6 shows the distribution of plausible imputations at three values 
of perceived control over pain. Candidate imputations fall exactly on the vertical hash-
marks, but I added horizontal jitter to emphasize that more scores are located at higher 
contours near the regression line. Randomly selecting one of the circles from each dis-
tribution would generate an imputed depression score (technically, imputations are not 
restricted to the circles displayed in the graph and could be selected from anywhere in 
the normal distribution).

Figure 1.12 shows the scatterplot of the artificial data after filling in the miss-
ing depression scores with stochastic regression imputes. As before, the gray contour 
rings convey the location and elevation of the bivariate normal population distribution. 
Unlike the other approaches in this section, stochastic regression imputation disperses 
imputations throughout the entire contour plot and doesn’t over- or underrepresent cer-
tain areas of the distribution. Comparing the plot to the hypothetically complete data 
set in Figure 1.5, the filled-in values look like good surrogates, because they preserve the 
center and spread of the depression scores, as well as their correlation with perceived 
control over pain. Although analyzing a stochastically imputed data set can provide 
accurate parameter estimates if values are MAR, doing so artificially shrinks standard 
errors and distorts significance tests; statistical software applications incorrectly treat 
imputes as real data when computing measures of uncertainty, such that standard errors 
reflect the hypothetical sampling variation that would have resulted had the data been 
complete. Pairing stochastic regression imputation with bootstrap resampling (Efron, 
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1987; Efron & Gong, 1983; Efron & Tibshirani, 1993) is one option for estimating mea-
sures of uncertainty (see Chapter 2) and generating and analyzing multiple sets of impu-
tations is another (see Chapter 7).

Last Observation Carried Forward

Last observation carried forward is a missing data technique for longitudinal designs 
with incomplete repeated measurements. The procedure is relatively rare in the behav-
ioral and the social sciences, and is more common in medical studies and clinical tri-
als (Wood et al., 2004). As its name implies, last observation carried forward imputes 
repeated measurements with scores from the prior measurement occasion. For example, 
if a participant drops out after the fifth week of an 8-week study, the fifth week’s score 
replaces all subsequent observations. To illustrate, Table 1.4 shows four waves of hypo-
thetical depression scores for five participants, with imputed scores shown in bold type-
face. As you can see, the prior measurement occasions “carry forward” regardless of 
whether a participant permanently attrits (e.g., the first and third data records) or has 
intermittent missing values (e.g., the fourth data record).

 FIGURE 1.12.  Scatterplot showing the data that result from applying stochastic regression 
imputation to an MAR process where 50% of the depression scores are missing for participants 
with lower perceived control over pain. The black crosshairs denote data records with perceived 
control scores and imputed depression values.
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Last observation carried forward effectively assumes no change after the final obser-
vation or during the intermittent period where scores are missing. The conventional wis-
dom is that imputing the data with stable scores yields a conservative estimate of treat-
ment group differences at the end of a study. However, empirical research shows that this 
isn’t necessarily true, as the method can also exaggerate group differences (Cook, Zeng, 
& Yi, 2004; Liu & Gould, 2002; Mallinckrodt, Clark, & David, 2001; Molenberghs et al., 
2004). The direction and magnitude of the bias depend on specific characteristics of the 
data, but the approach is likely to produce distorted parameter estimates, even with an 
unsystematic missingness process (Molenberghs et al., 2004). Suffice to say, there are 
much better strategies for dealing with longitudinal missing data.

1.8	 COMPARING MISSING DATA METHODS VIA SIMULATION

The previous scatterplots suggest that older missing data methods can misrepresent 
distributions in ways that almost certainly introduce bias. Monte Carlo computer simu-
lations can reveal how the tendencies depicted in the graphs unfold over many different 
samples and across different estimands. To this end, I used a series of simulation studies 
to compare listwise deletion, arithmetic mean imputation, regression imputation, and 
stochastic regression imputation to a “gold standard” maximum likelihood estimator 
for missing data. As mentioned previously, maximum likelihood missing data handling 
leverages the entire sample’s observed data without discarding any information. The 
other “gold standards,” Bayesian estimation and multiple imputation, are equivalent in 
this case (Collins et al., 2001; Schafer, 2003).

The first step of a computer simulation is to specify a set of hypothetical parameter 
values. Recycling the parameters that created the artificial depression and perceived con-
trol over pain data in the previous scatterplots helps visualize the procedure. Returning 

TABLE 1.4.  Imputed Data from Last Observation 
Carried Forward

ID Wave 1 Wave 2 Wave 3 Wave 4

Observed data

1 25 28 — —
2 22 21 24 26
3 18 — — —
4 30 — 31 34
5 20 20 22 21

Imputed data

1 25 28 28 28
2 22 21 24 26
3 18 18 18 18
4 30 30 31 34
5 20 20 22 21
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to Figure 1.2, the contour rings convey the perspective of a drone hovering over the peak 
of the bivariate normal population distribution, and the gray circles are an artificial 
sample of hypothetically complete data. The next step generates many artificial data 
sets from the population. Researchers often ask whether contemporary approaches like 
maximum likelihood can be used with small samples or large amounts of missing data. 
To examine this issue, I programmed a simulation that created 1,000 random samples of 
N = 100 from the bivariate normal population, and I deleted 50% of the artificial depres-
sion scores following one of the missing data mechanisms. The missing at completely at 
random process mimicked Figure 1.4, the conditionally MAR mechanism followed Fig-
ure 1.5, and the MNAR process mirrored Figure 1.7. After deleting scores, I used different 
missing data-handling methods to estimate three sets of parameters: the mean vector and 
variance–covariance matrix, coefficients from the regression of Y on X (e.g., perceived 
control over pain predicting depression), and coefficients from the regression of X on Y 
(e.g., depression predicting perceived control over pain). Any discrepancy between the 
average estimates and their true values reflects systematic nonresponse bias.

Missing Completely at Random

The first simulation modeled a missing (always) completely at random mechanism 
where missingness on Y (e.g., depression) was independent of the data. Table 1.5 shows 
the average parameter estimates for each method along with their true values. The esti-
mates in bold typeface differ from their true values by more than 10%. Missing data 

TABLE 1.5. Average Parameter Estimates  
from the MCAR Computer Simulation

Parameter True value LWD AMI RI SRI FIML

Means, variances, covariances

μX 20.00 20.02 20.02 20.02 20.02 20.02
μY 15.00 14.98 14.98 14.99 15.01 14.99
σX

2 25.00 24.86 24.91 24.91 24.91 24.66
σX⋅Y –12.65 –12.83 –6.33 –12.87 –12.88 –12.74
σY

2 40.00 40.44 19.95 23.75 40.40 39.75
ρX⋅Y –.40 –.40 –.28 –.52 –.40 –.40

Regression of Y on X

β0 25.12 25.31 20.06 25.31 25.36 25.31
β1 (X) –0.51 –0.52 –0.25 –0.52 –0.52 –0.52
σε

2 33.60 33.75 18.30 16.48 33.12 32.39

Regression of X on Y

γ0 24.74 24.76 24.76 28.06 24.80 24.82
γ1 (Y) –0.32 –0.32 –0.32 –0.54 –0.32 –0.32
σr

2 21.00 20.77 22.92 17.69 20.56 20.19

Note. LWD, listwise deletion; AMI, arithmetic mean imputation; RI, regression imputation; 
SRI, stochastic regression imputation; FIML, full-information maximum likelihood.
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theory predicts that listwise deletion, stochastic regression imputation, and maximum 
likelihood estimation are unbiased in large samples. The simulation bears this out, as 
the average estimates are effectively identical to the true population parameters, even 
with a small sample size and 50% missing data. As you might expect, mean imputation 
and regression imputation were prone to substantial biases. To illustrate, the solid curve 
in Figure 1.13 shows the sampling distribution of the correlation estimates for regres-
sion imputation, and the dashed curve shows the corresponding distribution for mean 
imputation. Neither method did a good job of recovering the population correlation, 
as the true value (the vertical line) was in the tails of both distributions. Although the 
presence and magnitude of the biases varied across estimands, the simulation results 
provide no support for these approaches on balance.

Although deletion appears to be just as good as maximum likelihood, leveraging the 
full sample’s observed data generates estimates that are more precise, with less variation 
across samples. The precision difference is dramatic for some estimands and modest for 
others. To illustrate, the solid curve in Figure 1.14 is a kernel density plot displaying 
the sampling distribution of the maximum likelihood mean estimates, and the dashed 
curve shows the corresponding distribution for listwise deletion. As you can see, both 
distributions are centered at the true value of 20, but the maximum likelihood estimates 
are substantially closer to the truth, on average (e.g., the peak of the solid curve is higher 
at the true value and its tails are less thick). As a second example, Figure 1.15 shows the 
sampling distributions of the covariance. Maximum likelihood is again more precise, 
but the difference is quite modest.

 FIGURE 1.13.  Kernel density plots of the correlation estimates from the MCAR computer sim-
ulation. The solid curve shows the sampling distribution of the regression imputation estimates, 
and the dashed curve shows the corresponding mean imputation estimates. Neither distribution 
is centered at the true value of –.40, indicating substantial nonresponse bias.
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 FIGURE 1.14.  Kernel density plots of the X mean estimates from the MCAR computer simula-
tion. The solid curve shows the sampling distribution of the maximum likelihood estimates, and 
the dashed curve shows the corresponding deletion estimates. Both distributions are centered at 
the true value of 20, but the maximum likelihood estimates are substantially closer to the true 
value, on average.

 FIGURE 1.15.  Kernel density plots of the covariance estimates from the MCAR computer 
simulation. The solid curve shows the sampling distribution of the maximum likelihood esti-
mates, and the dashed curve shows the corresponding deletion estimates. Both distributions are 
centered at the true value of –12.65, but the maximum likelihood estimates are slightly closer to 
the true value, on average.
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Missing at Random

The second simulation, which mimicked Figure 1.5, modeled a missing (always) at ran-
dom mechanism where the probability of a missing Y score increased as the value of X 
decreased (e.g., depression scores were more likely to be missing for participants with 
low perceived control over pain). Table 1.6 shows the average parameter estimates for 
each method, along with their true values. Following the first simulation, mean impu-
tation and regression imputation estimates were prone to bias, and the results offer no 
support for these procedures. A systematic missingness process was generally detrimen-
tal to the listwise deletion estimates as well. The notable exception was the regression 
of Y on X, where complete-case analysis gives optimal estimates when missingness does 
not depend on the outcome variable (Glynn & Laird, 1986; Little, 1992; von Hippel, 
2007; White & Carlin, 2010). Finally, missing data theory again predicts that maximum 
likelihood estimation and stochastic regression imputation should be unbiased in large 
samples, and they are virtually so here. These results are consistent with published sim-
ulation studies showing that the percentage of missing data is not a strong determinant 
of bias provided that presumed mechanism is correct (Madley-Dowd, Hughes, Tilling, 
& Heron, 2019). Finally, stochastic regression imputation gave equivalent point esti-
mates to maximum likelihood, but its standard errors and significance tests are untrust-
worthy without corrective procedures like the bootstrap.

TABLE 1.6. Average Parameter Estimates  
from the MAR Computer Simulation

Parameter True values LWD AMI RI SRI FIML

Means, variances, covariances

μX 20.00 22.51 19.99 19.99 19.99 19.99

μY 15.00 13.74 13.74 15.01 15.02 15.01

σX
2 25.00 18.64 25.11 25.11 25.11 24.86

σX⋅Y –12.65 –9.42 –4.66 –12.65 –12.66 –12.52

σY
2 40.00 38.44 19.03 23.62 40.05 39.57

ρX⋅Y –.40 –.35 –.21 –.51 –.40 –.40

Regression of Y on X

β0 25.12 25.09 17.46 25.09 25.10 25.09

β1 (X) –0.51 –0.50 –0.19 –0.50 –0.50 –0.50

σε
2 33.60 33.76 18.20 16.54 32.98 32.40

Regression of X on Y

γ0 24.74 25.89 23.37 27.99 24.79 24.77

γ1 (X) –0.32 –0.25 –0.25 –0.53 –0.32 –0.32

σr
2 21.00 16.32 24.04 18.03 20.79 20.46

Note. LWD, listwise deletion; AMI, arithmetic mean imputation; RI, regression imputation; 
SRI, stochastic regression imputation; FIML, full-information maximum likelihood.
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Missing Not at Random

The final simulation, which mirrored Figure 1.7, modeled a missing (always) not at 
random mechanism where the probability of a missing Y score increased as the value 
of Y itself increased (e.g., depression scores were more likely to be missing for partici-
pants with high levels of depression). Table 1.7 shows the average parameter estimates 
for each method, along with their true values. As you can see, all methods produced 
biased estimates of one or more estimands. Consistent with the MAR simulation, dele-
tion gave accurate estimates of the regression of X on Y, because missingness did not 
depend on the outcome (White & Carlin, 2010). Maximum likelihood and stochastic 
regression imputation estimates were similarly accurate for that model but exhibited 
predictable biases in other analyses. Conditioning on auxiliary variables could improve 
the situation a little bit, but the only way to counteract nonresponse bias from a focused 
MNAR process like this one is to adopt a specialized analysis that introduces a nui-
sance model for missingness (e.g., a selection model or pattern mixture model). To 
illustrate one such approach, I used maximum likelihood estimation to fit a selection 
model that introduces an additional regression, with Y predicting its own missingness 
(the true data-generating model). The rightmost column of Table 1.7 shows that a selec-
tion model can effectively eliminate bias, but achieving that payoff requires a correctly 
specified nuisance model. Chapter 9 describes analysis models for MNAR processes in 
more detail.

TABLE 1.7. Average Parameter Estimates  
from the MNAR Computer Simulation

Parameter True values LWD AMI RI SRI FIML FIML selection

Means, variances, covariances

μX 20.00 20.00 20.02 20.02 20.02 20.02 20.02
μY 15.00 14.97 14.97 14.97 14.97 14.97 14.87
σX

2 25.00 24.17 25.19 25.19 25.19 24.94 24.94
σX⋅Y –12.65 –9.61 –4.77 –10.06 –10.10 –9.96 –13.17
σY

2 40.00 30.04 14.93 17.35 30.17 29.71 42.06
ρX⋅Y –.40 –.36 –.25 –.48 –.36 –.36 –.39

Regression of Y on X

β0 25.12 22.97 18.77 22.97 23.00 22.97 25.47
β1 (X) –0.51 –0.40 –0.19 –0.40 –0.40 –0.40 –0.53
σε

2 33.60 26.23 14.02 12.90 25.67 25.18 34.64

Regression of X on Y

γ0 24.74 24.80 24.82 28.61 25.03 25.04 24.94
γ1 (X) –0.32 –0.32 –0.32 –0.58 –0.34 –0.34 –0.33
σr

2 21.00 21.14 23.71 19.08 21.55 21.21 20.35

Note. LWD, listwise deletion; AMI, arithmetic mean imputation; RI, regression imputation; SRI, stochastic regression 
imputation; FIML, full-information maximum likelihood.
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1.9	 PLANNED MISSING DATA

The remainder of the chapter describes planned missing data designs that introduce 
intentional missing values as a device for reducing respondent burden or lowering 
research costs. The thought of intentionally creating missing values might seem odd at 
first, but you are probably already familiar with the idea. For example, in a randomized 
study with two treatment conditions, everyone has a hypothetical score from both con-
ditions, but participants only provide a response to their assigned condition. The unob-
served response to the other condition—the potential outcome or counterfactual—is 
missing completely at random. Viewing randomized experiments as a missing data 
problem is popular in the statistics literature and is a key component of Rubin’s causal 
inference framework (Rubin, 1974; West & Thoemmes, 2010). The fractional factorial 
(Montgomery, 2020) is another research design that yields MCAR values. With this 
design, you purposefully select a subset of experimental conditions from a full facto-
rial scheme and randomly assign participants to a restricted combination of conditions. 
Carefully omitting certain design cells saves resources by eliminating higher-order 
effects that are unlikely to be present in the data. Finally, planned missingness designs 
have long been a staple in educational testing applications, where examinees are admin-
istered a subset of test questions from a larger item bank (Johnson, 1992; Lord, 1962). 
You likely encountered a variant of this approach if you took the Graduate Record Exam.

The advent of sophisticated missing data-handling methods prompted the devel-
opment of planned missingness designs that use intentional missing values to address 
logistical and budgetary constraints (Graham, Taylor, & Cumsille, 2001; Graham 
et al., 2006; Little & Rhemtulla, 2013; Raghunathan & Grizzle, 1995; Rhemtulla & 
Hancock, 2016; Rhemtulla & Little, 2012; Silvia, Kwapil, Walsh, & Myin-Germeys, 
2014). I describe three such designs in this section: multiform designs for questionnaire 
data, wave missing data designs for longitudinal studies, and two-method measurement 
designs that pair expensive and inexpensive measures of a construct. Importantly, these 
designs cannot introduce bias, because they create patterns of unsystematically missing 
values. Of course, introducing missing data necessarily reduces power, but the loss of 
precision is surprisingly low in many cases.

Multiform Designs

Multiform planned missingness designs are most often associated with studies that use 
lengthy surveys that comprise several questionnaires and many items. Respondent bur-
den is a major concern in these settings, because the number of items that people can 
reasonably answer in a single sitting is limited. A multiform design addresses this issue 
by administering multiple questionnaire forms that comprise different subsets of vari-
ables. For example, the classic three-form design (Graham et al., 1996, 2006) distributes 
variables into four blocks (X, A, B, and C) that are allocated across three different ques-
tionnaire forms. Each form includes the X set and is missing the A, B, or C set. Table 1.8 
shows the distribution of four blocks across the three forms, with O’s denoting observa-
tions and M’s indicating missing values, and Figure 1.1d shows a graphical schematic 
of the design. Supposing that each variable set contains 25 questionnaire items, then 
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survey length is reduced by 25% and participants respond to 75 rather than 100 ques-
tions. Multiform designs readily extend to include additional variable sets as needed. 
For example, Table 1.9 shows a six-form design from Rhemtulla and Little (2012) where 
respondents provide data on three out of five blocks, and Raghunathan and Grizzle 
(1995) and Graham et al. (2006) describe designs with even more forms.

The main downside to multiform designs (and planned missingness designs in gen-
eral) is a reduction in statistical power. The impact of missing data on power and preci-
sion is complex and depends on the type of model and parameter being estimated (e.g., 
models with latent vs. manifest variables; correlations vs. regression slopes), as well as 
the effect sizes within and between blocks (Rhemtulla, Savalei, & Little, 2016). Looking 
at the percentage of observed responses for each variable or variable pair (sometimes 
called covariance coverage) provides some insight. To illustrate, Table 1.10 shows the 
covariance coverage rates for a three-form design with eight variables distributed equally 
across four blocks. The cell percentages reflect three tiers of precision. All things being 
equal, tests involving members of the X set (e.g., Y1 and Y2) have the most power, because 
these variables are complete. Variable pairs with 33% missing data introduce a second, 
lower tier of precision and power. This tier includes between-set associations involving 
a member of the X set (e.g., Y1 and Y3) and within-set associations between variables in 
the A, B, or C blocks (e.g., Y3 and Y4). Finally, the greatest reductions in power occur 
when testing associations between variable pairs with 66% missing data. This includes 
all between-set associations involving members of A, B, or C (e.g., Y3 and Y5).

TABLE 1.8.  Three‑Form Design

Form

Variable set

X A B C

1 O M O O

2 O O M O

3 O O O M

Note. O, observed; M, missing.

TABLE 1.9.  Six‑Form Design

Form

Variable set

X A B C D

1 O M M O O

2 O M O M O

3 O O M M O

4 O M O O M
5 O O M O M
6 O O O M M

Note. O, observed; M, missing.
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With these percentages in mind, we can devise strategies for distributing variables 
to blocks in a way that mitigates rather than exacerbates the design’s natural inefficien-
cies. First, pairs of variables with strong associations should appear in different blocks 
(Raghunathan & Grizzle, 1995; Rhemtulla & Little, 2012; Rhemtulla et al., 2016). This 
makes intuitive sense, because a large effect size introduces redundancy that offsets 
a lack of observations. This principle has important implications for studies that use 
multiple-item scales to measure complex constructs, where items from the same scale 
tend to have much stronger correlations than items belonging to different scales. Dis-
tributing a scale’s items across different sets maximizes power (Graham et al., 1996, 
2006; Rhemtulla & Hancock, 2016; Rhemtulla & Little, 2012), especially when using 
a latent variable model to examine associations among constructs (Rhemtulla et al., 
2016).

Pairs of variables with weak associations are good candidates for the fully complete 
X set, because small effect sizes naturally require more data to achieve adequate power. 
Additionally, Graham et al. (2006) recommend assigning key outcome variables to the 
X set, as doing so maximizes power to test a study’s main substantive hypotheses. Ana-
lytic work from Rhemtulla et al. (2016) supports this recommendation, as the strategy 
maximizes power to detect non-zero regression slopes. Including outcome variables in 
the X set also ensures that two-way interaction effects are estimable (Enders, 2010). 
Finally, the X set could also include potential determinants or correlates of unplanned 
missing data, as conditioning on such variables is necessary to satisfy the MAR assump-
tion (Rhemtulla & Little, 2012). The power analyses in the next section highlight some 
of these principles.

Longitudinal Designs

Respondent burden and budgetary constraints can be particularly acute in longitudi-
nal studies where researchers administer assessments repeatedly over time. Extending 

TABLE 1.10. Percentage of Responses within and between Blocks 
of a Three‑Form Design

X A B C

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8

X Y1 100% 100%
Y2 100% 100%

A Y3 66% 66% 66% 66%
Y4 66% 66% 66% 66%

B Y5 66% 66% 33% 33% 66% 66%
Y6 66% 66% 33% 33% 66% 66%

C Y7 66% 66% 33% 33% 33% 33% 66% 66%
Y8 66% 66% 33% 33% 33% 33% 66% 66%
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the logic of the three-form design, Graham et al. (2001) described a number of wave 
missing data designs where each participant provides data at a subset of measurement 
occasions. Table 1.11 shows one such design that features seven random subgroups, 
six of which have intentional missing data at one wave. Longitudinal planned missing-
ness designs can be especially efficient relative to their complete-data counterparts. For 
example, applying the design in the table to the group-by-time interaction effect from 
a linear growth curve model, Graham and colleagues showed that power was 94% as 
large as that of a complete-data analysis. Other designs produce comparable power with 
even fewer data points. In situations where the total number of assessments is fixed 
(e.g., a grant budget can accommodate 1,000 assessments, each costing $100), Graham’s 
chapter further showed that wave missing data designs can achieve higher power than 
a corresponding complete-data design; that is, collecting incomplete data from 300 par-
ticipants can achieve higher power than collecting complete data from 250 participants.

Myriad configurations of patterns are possible with wave missing designs, not all of 
which are nearly as beneficial as the ones described earlier. Computer simulation stud-
ies provide details on a few possibilities (e.g., Graham et al., 2001; Mistler & Enders, 
2011), and methodologists have outlined general strategies for identifying designs that 
maximize efficiency in a particular scenario. Wu, Jia, Rhemtulla, and Little (2016) 
developed a computer simulation tool for this purpose called SEEDMC (SEarch for Effi-
cient Designs using Monte Carlo Simulation). Their algorithm creates a design pool con-
taining all possible planned missingness designs with a given number of measurement 
occasions, and it uses Monte Carlo computer simulations to create many artificial data 
sets for each member of the pool. Fitting a longitudinal model to each artificial data set 
and computing the sampling variation of the resulting estimates identifies designs with 
the highest relative efficiency (i.e., lowest possible sampling variation). More recently, 
Brandmaier, Ghisletta, and von Oertzen (2020) developed an analytic approach that 
estimates the measurement error of the individual change rates from a given configura-
tion of measurement occasions. Their method selects the same optimal designs as Monte 
Carlo computer simulations, but it does so without intensive computations. I illustrate a 
combination of these strategies in Section 10.11.

Wave missing data designs are particularly useful for studies that examine change 
following an intervention or a treatment. However, many researchers are interested in 

TABLE 1.11. Wave Missing Data Design for a Longitudinal Study
Group % sample Wave 1 Wave 2 Wave 3 Wave 4 Wave 5

1 16.7 O O O O O

2 16.7 M O O O O

3 16.7 O M O O O

4 16.7 O O M O O

5 16.7 O O O M O

6 16.7 O O O O M

Note. O, observed; M, missing.
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developmental processes that involve age-related change (e.g., the development of read-
ing skills in early elementary school, the development of behavioral problems during 
the teenage years). Cohort-sequential (Duncan, Duncan, & Hops, 1996; Nesselroade 
& Baltes, 1979) or cross-sequential designs (Little, 2013; Little & Rhemtulla, 2013) 
are ideally suited for this type of research question. This design requires multiple age 
cohorts, each of which is followed over a fixed period. These shorter longitudinal stud-
ies combine to produce a much longer developmental span. To illustrate, Table 1.12 
shows a cross-sequential design from a 3-year study with four age cohorts: 12, 13, 14, 
and 15. Notice that each cohort has three waves of intentional missing data (e.g., the 
12-year-olds have missing data at ages 15, 16, and 17; the 13-year-olds have missing data 
at ages 12, 16, and 17; and so on).

The four 3-year studies combine to create a longitudinal design spanning 6 years, 
but you must be careful analyzing the data, because several bivariate associations are 
inestimable. For example, there are no data with which to estimate the correlation 
between scores at ages 12 and 15, 13 and 16, 14 and 17, and so on. This feature rules out 
popular multiple imputation procedures that array repeated measurements in columns 
(e.g., Schafer, 1997; van Buuren, 2007). However, you can readily use maximum likeli-
hood or Bayesian estimation to fit growth models to the data, and multilevel imputation 
schemes that nest repeated measurements within individuals are another possibility 
(see Chapter 8).

Two‑Method Measurement Designs

The two-method measurement design (Graham et al., 2006) was developed for situa-
tions in which a researcher has the choice between two measures of a construct, one 
of which is expensive and valid (i.e., a “gold standard” measure), the other of which is 
inexpensive but less valid. The basic idea is to collect the inexpensive measure from the 
entire sample and restrict the expensive measure to a random subset of participants. 
Graham et al. give an example from cigarette smoking research where self-reports with 
dubious validity are obtained from the entire sample and “gold standard” biochemical 
validators are collected from a smaller subsample. The two-method design could also 
be beneficial with brain imaging studies, where functional magnetic resonance imaging 
(fMRI) data are difficult and costly to obtain, but inexpensive behavioral measures are 
inexpensive and easy to collect from a much larger sample.

TABLE 1.12. Cross‑Sequential Design for a Developmental Study
Cohort 12 13 14 15 16 17

12 O O O M M M
13 M O O O M M
14 M M O O O M
15 M M M O O O

Note. O, observed; M, missing.
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There are at least two ways to analyze data from a two-method measurement design. 
One approach is to cast the “gold standard” measure in the focal analysis model and use 
the inexpensive measure as an auxiliary variable. As a preview, Figure 1.16a shows a 
path diagram of the so-called extra dependent variable model (Graham, 2003) that 
features the auxiliary variable (the inexpensive measure) as an additional outcome. The 
idea is that the inexpensive measure transmits information to the expensive measure 
(and thus enhances the power) via its mutual association with the predictor and a cor-
related residual term (the double-headed curved arrow connecting the residuals). If the 
two measures can be cast as multiple indicators of the same construct, a second option 
is to analyze the data with a latent variable model similar to the one in Figure 1.16b. 
Graham et al. (2006) refer to this diagram as a bias-reduction model, because the cor-
related residual between the two inexpensive measures removes extraneous sources of 

 FIGURE 1.16.   The top panel shows a path diagram of the extra dependent variable model, and 
the bottom panel is diagram of a bias-reduction model for a two-method measurement design 
where inexpensive and expensive measures are indicators of a latent factor.

Expensive Inexpensive

Predictor

(a)  Extra Dependent Variable Model

(b)  Bias Correction Model

Expensive
Inexpensive  
Measure 1

LatentPredictor

Inexpensive  
Measure 2
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correlation that result from invalidity, thus improving the accuracy of the structural 
regression coefficient connecting the covariate to the latent outcome. Graham et al. 
(2006) and Rhemtulla and Little (2012) provide guidelines for determining the optimal 
sample size ratio for the expensive measure, and Monte Carlo computer simulations are 
also ideally suited for this task.

1.10	 POWER ANALYSES FOR PLANNED MISSINGNESS DESIGNS

This final section illustrates a power analysis for a three-form design. Section 10.10 
presents a similar power study for a longitudinal growth curve model with wave missing 
data and unplanned missingness. I use computer simulations for this purpose, because 
they are relatively easy to implement and are generally applicable to virtually any analy-
sis model. The goal of a computer simulation is to generate many artificial data sets with 
known population parameters and examine the distributions of the estimates across 
those many samples. In a power analysis, the focus shifts to significance tests, where the 
simulation-based power estimate is the proportion of artificial data sets that produced 
a significant test statistic.

The first step of a simulation is to specify hypothetical values for the population 
parameters. This is especially important when planning a three-form design, because the 
expected effect sizes dictate the assignment of variables to the four sets (e.g., variables 
with strong associations can be exposed to large amounts of missingness). I take a some-
what different tack that holds effect size constant to illustrate the design’s natural tenden-
cies and highlight previous findings from the literature. To this end, I considered four nor-
mally distributed variables (one variable per set) with uniformly moderate correlations 
equal to .30. The simulation created 5,000 random samples of N = 250 from this popula-
tion, and I subsequently deleted data according to the three-form design in Table 1.8.

Power depends, in part, on the type of parameter being estimated (e.g., the covari-
ance between two variables has different power than a regression slope). To illustrate 
this point, I fit two models to each artificial data set: a saturated model consisting of a 
mean vector and variance–covariance matrix, and a three-predictor linear regression 
model with one of the variables arbitrarily designated as the outcome. The assignment 
of the outcome variable to the four sets is an important consideration, so I further exam-
ined two design configurations: one with a complete predictor in the X set, and the other 
with a complete outcome in the X set. Figure 1.17 shows path diagrams of the four possi-
bilities, with shaded rectangles representing blocks with missing data. I used maximum 
likelihood estimation to fit the analysis models to the artificial data sets, and I recorded 
the proportion of the 5,000 samples that produced statistically significant estimates. 
This proportion is a simulation-based estimate of the probability of rejecting a false null 
hypothesis. Maximum likelihood is the focus of the next two chapters, but for now it is 
sufficient to know that the estimator leverages the full sample’s observed data without 
discarding any information. Simulation scripts are available on the companion website.

Table 1.13 gives power estimates for each correlation and regression slope along 
with the corresponding power values for optimal analyses with no missing data. To 
facilitate interpretation, the power ratios reflect complete-data power relative to that of 
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a planned missingness design (e.g., 1.20 means that a complete-data analysis has 20% 
more power). Table 1.13 illustrates several important points, all of which echo findings 
from the literature. First, notice that power estimates differ by estimand, with regres-
sion slopes exhibiting lower power than correlations. This isn’t necessarily surprising 
given that the coefficients reflect partial associations, but it nevertheless highlights the 
importance of considering different analyses that will be performed on the incomplete 
data. Second, correlations involving a complete variable in the X set (e.g., the association 
in the first row of the table) experienced virtually no reduction in power, even though 

X1 (X Set) X2 (A Set) X3 (B Set) Y  (C Set)

(a) Model 1: Incomplete Outcome

Y  (X Set) X1 (A Set) X2 (B Set) X3 (C Set)

(b) Model 1: Complete Outcome

Y  (C Set)

X1 (X Set) X2 (A Set) X3 (B Set)

(c) Model 2: Incomplete Outcome

Y  (C Set)

X1 (X Set) X2 (A Set) X3 (B Set)

(d) Model 2: Complete Outcome

 FIGURE 1.17.   Path diagrams depicting two analysis models and two configurations of planned 
missing data. The four sets of the three-form designs are color coded, with shaded rectangles rep-
resenting blocks with missing data.
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33% of the other variable’s scores were missing (e.g., the power advantage of a complete-
data analysis was only about 2%). Third, correlations involving variable sets AB, AC, or 
BC (e.g., the correlation between X2 and X3) still had sufficient power values above .80, 
even though only 33% of score pairs were complete (see Table 1.10). Finally, the bottom 
section of Table 1.13 illustrates that assigning the outcome variable to the complete X set 
uniformly improves the power of all regression slopes, whereas assigning a predictor to 
the X set benefits only that covariate’s slopes. As noted previously, assigning outcomes 
to the X set also ensures that all two-way interactions are estimable.

1.11	 SUMMARY AND RECOMMENDED READINGS

This chapter described the theoretical underpinnings for missing data analyses, as out-
lined by Rubin and colleagues (Little & Rubin, 1987; Mealli & Rubin, 2016; Rubin, 
1976). This work classifies missing data problems according to three different processes 
that link missingness to the data: an unsystematic or haphazard missing completely at 
random (MCAR) mechanism, a systematic conditionally missing at random (CMAR) 
process where missingness relates only to the observed data, and a systematic missing 
not at random (MNAR) mechanism where unseen score values determine missingness. 
From a practical perspective, these mechanisms function as statistical assumptions for 
a missing data analysis, and they also help us understand why not to use older methods 
like deletion and single imputation with a mean or predicted value.

Looking forward, most of the book is devoted to methods that naturally require a 
conditionally MAR assumption—maximum likelihood, Bayesian estimation, and mul-
tiple imputation. This mechanism is reasonable for many applications, and flexible soft-
ware options abound. Chapter 9 describes how to modify these methods to model differ-

TABLE 1.13.  Simulation‑Based Power Estimates  
for a Three‑Form Design

Parameter
Optimal 
power

X1 complete Y complete

Power Power ratio Power Power ratio

Correlations

Y ↔ X1 1.00 .98 1.02 .98 1.02
Y ↔ X2 1.00 .83 1.21 .98 1.02
Y ↔ X3 1.00 .84 1.19 .98 1.02
X1 ↔ X2 1.00 .98 1.02 .82 1.22
X1 ↔ X3 1.00 .98 1.02 .82 1.21
X2 ↔ X3 1.00 .82 1.22 .82 1.22

Regression slopes

X1 → Y   .85 .61 1.40 .62 1.37
X2 → Y   .86 .40 2.12 .63 1.36
X3 → Y   .86 .40 2.14 .64 1.35
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ent MNAR processes. In the near term, maximum likelihood estimation is the next topic 
on the docket. Chapter 2 describes the full information estimator for complete data, 
and Chapter 3 applies the method to missing data problems. Finally, I recommend the 
following articles for readers who want additional details on topics from this chapter:

Collins, L. M., Schafer, J. L., & Kam, C. M. (2001). A comparison of inclusive and resrictive strate-
gies in modern missing data procedures. Psychological Methods, 6, 330–351.

Graham, J. W., Taylor, B. J., Olchowski, A. E., & Cumsille, P. E. (2006). Planned missing data 
designs in psychological research. Psychological Methods, 11, 323–343.

Madley-Dowd, P., Hughes, R., Tilling, K., & Heron, J. (2019). The proportion of missing data 
should not be used to guide decisions on multiple imputation. Journal of Clinical Epidemiol-
ogy, 110, 63–73.

Olinsky, A., Chen, S., & Harlow, L. (2003). The comparative efficacy of imputation methods for 
missing data in structural equation modeling. European Journal of Operational Research, 
151, 53–79.

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592.

Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychologi-
cal Methods, 7, 147–177.
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