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2.1	 INTRODUCTION

In Chapter 1, I introduced the basic concepts of latent state–trait revised (LST-
R) theory. These concepts rested on a rather small and unrestrictive set of 
assumptions (e.g., positive and finite variances of observed variables). LST-R 
theory allows us to define latent state, trait, state residual, and measurement 
error variables based on conditional expectations of observed variables and to 
examine their properties. The definitions of the latent variables that I presented 
in Chapter 1 are useful because they provide us with latent variables that are 
relevant to longitudinal studies and make clear what the latent variables mean.

On the other hand, the definitions by themselves do not result in identified 
and testable statistical models for longitudinal data analysis. This can be easily 
seen from the fact that according to LST-R theory, each observed variable at each 
time point is decomposed into its own trait, state residual, and measurement 
error variable. Our observed data do not contain enough information to identify 
all of the relevant latent variable means, variances, and covariances. Specific lon-
gitudinal measurement models introduce simplifying restrictions that reduce the 
number of latent variables as well as the number of parameters to be estimated.

In this chapter, I introduce very simple longitudinal measurement models 
with just a single latent factor and a single indicator per measurement occa-
sion. I show how longitudinal measurement models for a single repeatedly mea-
sured variable can be obtained by making assumptions, for example, about the 
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homogeneity and (in)dependence of certain latent variables. These assumptions 
reduce the number of latent variables that need to be considered in a model. 
They also lead to (1) identified statistical models that can be estimated based 
on observed data and (2) testable restrictions that allow us to potentially falsify 
these assumptions based on tests of model fit.

In this chapter as well as in Chapter 3, I focus on single-indicator data, that 
is, models for longitudinal designs that use only a single repeatedly measured 
observed variable Yt for each construct at each time point t. Chapter 3 deals with 
single-indicator longitudinal models that use more than one latent factor. Many 
of the models discussed in Chapters 2 and 3 have counterparts for multiple-
indicator data, which I discuss in Chapter 5.

2.2	 THE RANDOM INTERCEPT MODEL

2.2.1	Introduction

The random intercept model is one of the simplest and most restrictive measure-
ment models that can be fit to longitudinal data. It assumes that individuals’ 
trait scores do not change across time. Therefore, it is frequently used as a base-
line model in longitudinal analyses. If the random intercept model shows a good 
fit to the data at hand, this may indicate that a construct did not change across 
time. In this case, more complex longitudinal models may not be needed.

2.2.2	Model Description

The random intercept model for a single construct and four time points is 
depicted in Figure 2.1 as a path diagram. In the path diagram, the triangle 
represents a constant of 1.0 that serves to add the mean structure (means and 
constant intercepts) to the model. It can be seen that in this model, the repeat-
edly measured observed variable Yt loads onto a single common trait factor ξ. (I 
dropped the index i for the observed variable throughout this chapter, given that 
all models in this chapter assume only a single repeatedly measured observed 
variable.) All factor loadings are fixed to 1, and all measurement intercepts are 
fixed to zero. Hence, the model can be described by the following measurement 
equation:

Yt = ξ + εt

This model is called a random intercept model because there is no fixed 
intercept (i.e., additive constant) in the model equation. Instead, there is only a 
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random intercept that is represented by the trait factor ξ. The trait factor is con-
sidered a random intercept because its values can vary across individuals (fixed 
intercepts, in contrast, are constants that do not vary between individuals).

The random intercept model estimates the following parameters:

•	 the trait factor mean E(ξ),

•	 the trait factor variance Var(ξ), and

•	 n measurement error variances Var(εt), one for each for each time point 
t = 1, . . . , n.

Therefore, the model in general has n + 2 free model parameters, where n 
indicates the total number of measurement occasions. In our example, we have 
four measurement occasions (n = 4). Therefore, our model has 4 + 2 = 6 free 
parameters.

In our example with four time points, we have 14 pieces of available infor-
mation (four Yt variances, four Yt means, and six unique Yt covariances). The ran-
dom intercept model in our example therefore has 14 – 6 = 8 degrees of freedom 
(df; for general information on how to calculate the number of pieces of available 
information and df for single-indicator longitudinal models, see Box 2.1).

Readers familiar with classical test theory (CTT) models may find that the 
random intercept model resembles the model of tau equivalence in CTT, which 

FIGURE 2.1.  Path diagram of the random intercept model for a single observed vari-
able Yt that is measured on four time points. ξ = trait (random intercept) factor; εt = 
measurement error variable.
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BOX 2.1. Available Information, Model Degrees of Freedom, 
and Model Identification in Single-Indicator Longitudinal Designs

What information is used to estimate unknown model parameters in single- 
indicator longitudinal structural equation models, and how are a model’s 
degrees of freedom (df) calculated? In single- indicator longitudinal designs, we 
only have one (repeatedly observed) measure (m = 1) but n > 1 time points. We 
can therefore draw on n repeatedly measured variables Y1, . . . , Yn. Each mea-
sured variable Yt has a mean E(Yt), a variance Var(Yt), and covariances Cov(Yt, 
Ys), t ≠ s, with all other measured variables. The observed Yt means, variances, 
and covariances provide the information that we use to estimate the unknown 
model parameters in all longitudinal structural equation models described in 
this book. In empirical applications, we can compute the means, variances, and 
covariances for all Yt variables based on our sample data.

In single- indicator designs, we have n observed Yt variances, n observed 
Yt means, and 0.5 ⋅ (n2 – n) observed unique Yt covariances from which we can 
estimate unknown model parameters. In total, there are 1.5 ⋅ n + 0.5 ⋅ n2 pieces 
of available information in single- indicator longitudinal designs. With one mea-
sure and four time points, we have 1.5 ⋅ 4 + 0.5 ⋅ 16 = 14 pieces of available 
information (four Yt variances, four Yt means, and six unique Yt covariances).

The degrees of freedom (df) of a model are calculated as the number of 
pieces of available information minus the number of free (unknown) model 
parameters. Models with negative (< 0) df are underidentified models (there 
is not enough information available to estimate all unknown parameters). For 
example, the random intercept model is underidentified when there is only a 
single time point (n = 1). Models in which df = 0 may be just identified (“satu-
rated”). Saturated models cannot be tested because they always fit perfectly. 
An example of a saturated model is the random and fixed intercepts model 
(described in Section 2.3) for n = 2 time points. Models with df > 0 may be over-
identified and contain testable restrictions. Only overidentified models can be 
empirically falsified (e.g., based on a chi- square test of model fit). For example, 
the random intercept model is overidentified for n ≥ 2 time points.

Unfortunately, df ≥ 0 is only a necessary, but not a sufficient, condition for 
model identification. That is, models with zero or positive df may still be under-
identified. More information on the general issue of structural equation model 
identification can be found, for example, in Bollen (1989).
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BOX 2.2. Defining the Random Intercept Model Based on LST‑R Theory

The random intercept model can be defined using concepts of LST-R theory in a 
similar way as the tau- equivalence model can be defined using concepts of CTT. 
Three assumptions are required:

1. ξ-equivalence: The latent trait variables for all time points are identical, 
such that ξt = ξs = ξ for all t, s = 1, . . . , n.

2. No situation or person × situation interaction influences: All latent state 
residual variables are zero, ζt = ζs = 0 for all t, s = 1, . . . , n.

3. Linear independence of trait and error variables: Cov(ξ, εt) = 0 for all t
= 1, . . . , n.

Assumption 1 implies that individuals’ trait scores do not change across 
time. Hence, there is perfect stability of latent trait scores in this model. Figure 
2.2 illustrates the model- implied patterns of trait scores for three hypothetical 
individuals. It can be seen that each individual trajectory is flat, indicating the 
perfect intraindividual stability of trait scores for all individuals. In actual data, 
this pattern may be plausible (at least approximately) for rather stable personal-
ity constructs such as intelligence.

Assumption 2 implies that measurements reflect only trait (person) 
aspects of a construct and random measurement error. From the perspective of 
LST-R theory, the model is restrictive because it assumes that there are no situ-
ational influences or person × situation interaction effects that could also have 
an impact on the measurements. Any intraindividual differences that occur in 
observed Yt scores across time are solely due to measurement error according 
to this model. This implies that the model would only be suitable for perfectly 
stable trait-like constructs that are unaffected by situational effects (or measures 
that reflect only the trait aspects of a construct).

Assumption 3 prohibits any correlations between measurement error vari-
ables and the common latent trait factor, which is a standard assumption made 
in most structural equation models (and the default in Mplus). Notice that we do 
not need to make the assumption of uncorrelated errors, Cov(εt, εs) = 0 for t ≠ s, 
because this property already follows by definition of the error variables in LST-R 
theory (see Chapter 1, Box 1.2). That is, in all LST-R models, measurement error 
variables pertaining to different time points are uncorrelated by definition. (In 
Mplus all error variables are uncorrelated by default.)
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also represents a single-factor model with equal loadings and equal intercepts. 
This is not a coincidence as I show in Box 2.2, where I describe how the random 
intercept model can be derived based on the concepts of LST-R theory. Figure 
2.2 shows the model-implied trajectories of the trait scores for three hypotheti-
cal individuals. We can see that the model implies perfect stability of individu-
als’ trait scores over time.

Although very restrictive, the random intercept model serves at least three 
useful purposes in longitudinal studies. First, it can be seen as a baseline “no 
change” model. If this model fits well, no further analyses of trait changes are 
needed (assuming sufficient statistical power for tests of model fit). In contrast, 
if this model is rejected based on tests of model fit, this may indicate that fur-
ther analyses of change may be useful. Second, the model may be appropriate 
for social science constructs that show a high degree of stability (i.e., mean and 
covariance stability) across time and are not prone to situational influences (e.g., 
intelligence). Third, for such stable constructs, the model allows researchers to 
estimate the reliability (measurement precision) of the observed scores.

2.2.3	Variance Decomposition and Reliability Coefficient

In the random intercept model, the variance of each measured variable can be 
decomposed additively because trait and error variables are uncorrelated:

Var(Yt) = Var(ξ) + Var(εt)

Time 1 Time 2 Time 3 Time 4

Individual 1

Individual 2

Individual 3

ξt(u)

FIGURE 2.2.  Illustration of possible model-implied trait scores in the random inter-
cept model for three hypothetical individuals. It can be seen that the model implies 
perfect stability (no changes) in the trait scores for all individuals.

	 Single‑Factor Models for Single‑Indicator Data    21
Cop

yri
gh

t ©
 20

20
 Th

e G
uil

for
d P

res
s



A coefficient can then be defined that quantifies the proportion of reliable 
(systematic) variability in a measured variable (as opposed to unsystematic mea-
surement error variance). This coefficient is known from CTT as the reliability 
coefficient Rel(Yt). In the random intercept model, the Rel(Yt) coefficient is given 
by

Rel(Yt) = Var(ξ) / Var(Yt)

= Var(ξ) / [Var(ξ) + Var(εt)]

= 1 – {Var(εt) / [Var(ξ) + Var(εt)]}

The interpretation of the Rel(Yt) coefficient parallels the interpretation in 
CTT. Ranging between 0 and 1, values of Rel(Yt) closer to 1 indicate higher reli-
ability. For example, a value of Rel(Yt) = .8 indicates that 80% of the observed 
score variability reflect individual differences in true trait scores and the 
remaining 20% reflect variability due to random measurement error. When the 
standardized solution (STDYX) is requested, Mplus prints the Rel(Yt) coefficient 
under R-SQUARE Observed variable in the output.

2.2.4	Mplus Application

Below I present an Mplus application of the random intercept model to a hypo-
thetical data set from N = 300 individuals who took an intelligence test on 
four measurement occasions. Individuals’ IQ scores at each time point are rep-
resented by four observed variables Y1 through Y4 in the Mplus analysis. The 
random intercept model can be specified in Mplus using the following MODEL 
statement (the complete Mplus input and output files along with the example 
data sets can be found on the companion website [see the box at the end of the 
table of contents]).

MODEL: KSI by Y1-Y4@1;
  [Y1-Y4@0];
  [KSI*];

The first line of code specifies that a single factor (latent variable) labeled 
KSI is measured by all four Yt variables. All four factor loadings are fixed to 1, 
as indicated by the @1 statement. The second line of code [Y1-Y4@0]; sets all 
four intercepts to zero. (Mplus would by default freely estimate a constant inter-
cept for each measured variable Yt.) Fixing all loadings to unity and all intercepts 
to zero is a consequence of Assumption 1 (ξ-equivalence) above. According to 
the ξ-equivalence assumption, all four time-specific trait factors ξt are identical. 
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Therefore, there are no additive constants (fixed intercepts) in the measurement 
equation Yt = ξ + εt. In addition, no differences in scaling are assumed between 
different trait variables ξt and ξt′, so that the implicit multiplicative coefficient 
is 1.0: ξt = 1 ⋅ ξt′ = 1 ⋅ ξ. Therefore, all factor loadings must be fixed to 1 in this 
model. (Mplus by default estimates all factor loadings freely except for the first 
observed variable listed in the BY statement.)

The mean of the trait factor KSI is estimated by stating the latent variable 
name in brackets in the third line of code: [KSI*];. The KSI factor variance as 
well as the four measurement error variances are estimated by default in Mplus 
and thus do not have to be mentioned explicitly in the MODEL statement.

OUTPUT: SAMPSTAT STDYX;

As for most analyses in Mplus, it is useful to request that the sample (descriptive) 
statistics (SAMPSTAT) as well as the completely standardized solution (STDYX) 
be printed in the output in addition to the default output. Among other informa-
tion, the standardized solution STDYX provides the reliability estimates Rel(Yt) 
as I show below.

Below are selected goodness-of-fit statistics (for a detailed description of 
these statistics, see Box 2.3) that Mplus computed for the random intercept 
model:

MODEL FIT INFORMATION
. . .
Chi-Square Test of Model Fit
          Value                              5.347
          Degrees of Freedom                     8
          P-Value                           0.7199
RMSEA (Root Mean Square Error Of Approximation)
          Estimate                           0.000
          90 Percent C.I.                    0.000  0.050
          Probability RMSEA >= .05           0.948
CFI/TLI
          CFI                                1.000
          TLI                                1.001
. . .
SRMR (Standardized Root Mean Square Residual)
          Value                              0.052

The model shows an appropriate fit according to all indices. This is indi-
cated by the large p-value associated with the chi-square test of model fit (p = 
.7199) as well as RMSEA equal to zero, small SRMR (0.052), and CFI/TLI of 1. 
An excellent fit is expected here, given that the model was correctly specified for 
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BOX 2.3. Model Fit Assessment and Model Comparisons

One advantage of all models presented in this book is that they can be tested 
against the observed data and therefore potentially be falsified in empirical 
research. Model goodness- of-fit assessment in longitudinal confirmatory factor 
analysis (CFA) and structural equation modeling (SEM) follow general prin-
ciples that are the same as those for other types of CFA and SEM approaches. 
The basic idea of model fit assessment in CFA or SEM is that a model can only 
be correct if the covariance and mean structure in the population match the 
model- implied covariance and mean structure. A chi- square test of model fit is 
frequently used to test the null hypothesis that the data structure in the popu-
lation is identical to the model- implied data structure. This null hypothesis of 
exact model fit can be rejected when the chi- square test returns a small p-value 
(e.g., p ≤ .05). In other words, a small p-value can lead to model rejection.

The null hypothesis tested with the chi- square test is rather strict, requir-
ing an exact fit of a given model in the population. Some researchers (e.g., 
Bollen, 1989) therefore view the null hypothesis as unrealistic for most social 
science applications. This is because models by definition represent simplifica-
tions of reality and are thus not expected to show a perfect fit. To examine and 
quantify “approximate” model fit, a number of fit indices have been developed 
that are also frequently reported in the literature. The most commonly used 
indices include the root mean square error of approximation (RMSEA; Steiger & 
Lind, 1980), comparative fit index (CFI; Bentler, 1990), and standardized root 
mean square residual (SRMR; Bentler, 1995; Jöreskog & Sörbom, 1981). The 
simultaneous consideration of multiple indices has been recommended, where 
RMSEA values close to .06, CFI values close to .95, and SRMR values close 
to .08 may indicate adequate approximate model fit (Hu & Bentler, 1999). In 
addition, for a given data set, different models can be compared based on infor-
mation criteria (IC) such as the Bayesian information criterion (BIC). In such 
comparisons, models with lower BIC values are preferred. A detailed discussion 
of model goodness- of-fit indices for confirmatory factor and structural equation 
models can be found in Bollen and Long (1993), Hu and Bentler (1999), as well 
as Schermelleh- Engel, Moosbrugger, and Müller (2003).
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simulated data drawn from a known population model. Next, Mplus provides 
the maximum likelihood estimated unstandardized and standardized param-
eter estimates for the random intercept model:

MODEL RESULTS
                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value
 KSI      BY
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 1.000      0.000    999.000    999.000
    Y4                 1.000      0.000    999.000    999.000
 Means
    KSI              100.279      0.850    118.027      0.000
 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2                 0.000      0.000    999.000    999.000
    Y3                 0.000      0.000    999.000    999.000
    Y4                 0.000      0.000    999.000    999.000
 Variances
    KSI              210.102     17.689     11.878      0.000
 Residual Variances
    Y1                26.103      2.847      9.168      0.000
    Y2                30.085      3.141      9.579      0.000
    Y3                25.683      2.812      9.133      0.000
    Y4                22.365      2.578      8.675      0.000

STANDARDIZED MODEL RESULTS (STDYX Standardization)
                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value
 KSI      BY
    Y1                 0.943      0.007    131.911      0.000
    Y2                 0.935      0.008    119.133      0.000
    Y3                 0.944      0.007    131.637      0.000
    Y4                 0.951      0.007    144.281      0.000
 Means
    KSI                6.918      0.297     23.289      0.000
 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2                 0.000      0.000    999.000    999.000
    Y3                 0.000      0.000    999.000    999.000
    Y4                 0.000      0.000    999.000    999.000
 Variances
    KSI                1.000      0.000    999.000    999.000
 Residual Variances
    Y1                 0.111      0.013      8.194      0.000
    Y2                 0.125      0.015      8.530      0.000
    Y3                 0.109      0.014      8.046      0.000
    Y4                 0.096      0.013      7.679      0.000
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R-SQUARE
    Observed                                        Two-Tailed
    Variable        Estimate       S.E.  Est./S.E.    P-Value
    Y1                 0.889      0.013     65.956      0.000
    Y2                 0.875      0.015     59.567      0.000
    Y3                 0.891      0.014     65.819      0.000
    Y4                 0.904      0.013     72.141      0.000

The unstandardized solution provides the estimates of the latent trait factor 
mean (100.279) and variance (210.102), as well as the estimates of the four freely 
estimated measurement error variances (printed under RESIDUAL VARI-
ANCES, values ranging between 22.365 and 30.085). In this example, the mea-
surement error variances are fairly small compared to the trait factor variance, 
indicating high reliability (measurement precision). The degree of reliability of 
the measures becomes clearer from the estimates provided in the standardized 
solution.

In the standardized solution, we obtain estimates of the standardized fac-
tor loadings (range: .935 through .951). Notice that even though we fixed all 
factor loadings to unity, the standardized factor loadings differ from one (and 
from each other). This is because we allowed the measurement error variances 
to differ across time. As a consequence, the observed variable variances are not 
restricted to be equal by the model. If we had constrained the measurement 
error variances to be time-invariant, we would have also obtained equal stan-
dardized loadings in this model.

The standardized loadings in the example output indicate that the mea-
sures Yt are strongly correlated with the trait factor ξ (all loadings are > .93). 
Again, this indicates the high reliability of the measurements. The reliability 
estimates Rel(Yt) themselves are given by the squared standardized loadings in 
this model and can be found under R-SQUARE in the Mplus output [range: .875 
≤ Rel(Yt) ≤ .904]. The trait factor ξ thus accounts for ≥ 87.5% of the variability 
in the observed variables Yt in this example. This shows that there is not much 
room for additional situational or person × situation interaction effects, imply-
ing that the assumption of a strongly trait-like construct is plausible. (If there 
is any systematic situational variance in this example, it would be a very small 
amount and would be confounded with measurement error variance.)

2.2.5	Summary

The random intercept model implies both strict covariance and strict mean sta-
bility at the latent level. Any changes in measured scores Yt are solely attributed 
to measurement error in this model. Situation-specific fluctuations in the true 
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scores are not allowed. In the sense of LST-R theory, the model implies that the 
construct under study is perfectly trait-like and stable over time.

The random intercept model is a useful baseline model for longitudinal 
data, because it allows testing the simple hypothesis that there have not been 
any true changes in a construct across time. Given sufficient statistical power, 
a well-fitting random intercept model may indicate that further analyses of 
change are not needed and that the construct is a stable trait for the time period 
and population under study. In this case, no further models may need to be 
examined. The researcher can use the random intercept model to estimate the 
reliabilities of the indicators and, if desired, link the trait factor to other external 
variables to study relationships with other constructs.

The random intercept model is overidentified and implies a testable restric-
tion already when there are only two time points. In this case, the model allows 
testing whether the two observed means are equal in the population, that is, 
whether E(Y1) = E(Y2). For three or more time points, the random intercept 
model allows testing whether all variables have equal covariances (in addition 
to having equal means).

In many practical social science applications, the random intercept model 
does not fit as well as in our example, and/or the standardized factor loadings are 
a lot smaller than the ones obtained here, resulting in seemingly low reliabilities 
of the observed variables. If the model does not fit, this may be an indication 
that trait changes did occur (which the model does not allow). If the standard-
ized loadings and reliabilities are weaker than one would expect (e.g., based 
on known or typical reliabilities for the given measure), this might indicate 
that the measurement error variances are overestimated due to the presence of 
systematic situation or person × situation interaction effects (which the model 
also ignores). If systematic situation or person × situation interaction effects are 
present in a measure, the random intercept model confounds these effects with 
measurement error, leading to an inflation of the measurement error variance 
estimates and an underestimation of the indicator reliabilities (R2 values).

Despite this misspecification, the random intercept model may show a 
decent fit to the data. Hence, model fit alone does not tell the researcher whether 
the random intercept model is reasonable in a given application. The standard-
ized loadings and reliabilities as well as other parameter estimates should also 
be considered.

The next two models address the first limitation of the random intercept 
model (no trait changes permitted) to some degree. The trait–state–error model 
discussed in Section 3.4 as well as the multiple-indicator LST models described 
in Chapter 5 address the second limitation (no situation and interaction effects 
permitted).
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2.3 THE RANDOM AND FIXED INTERCEPTS MODEL

2.3.1 Introduction

The random intercept model implies that there are no mean changes across 
time. This is because the model estimates only one common mean parameter 
E(ξ). The fixed intercepts (additive constants) of the observed variables Yt are all 
set to zero, and their loadings are set to 1. Therefore, the model implies mean 
stability across time. This assumption can be relaxed by adding fixed intercept 
parameters to the random intercept model. I call the resulting model the random 
and fixed intercepts model, as it contains both a random intercept (trait) factor and 
fixed intercepts (additive constants αt).

2.3.2 Model Description

The random and fixed intercepts model is depicted in Figure 2.3. Notice that 
the random intercept factor ξ1 now has an index for Time t = 1. This is because 

BOX 2.4. Means of Linear Combinations

The mean structure plays an important role in most longitudinal structural 
equation models, as researchers are often interested in mean differences between 
measurement occasions. In the general so- called congeneric measurement model 
that is often used in longitudinal confirmatory factor models, an observed vari-
able Y is connected to a latent variable, say η by an additive constant (intercept 
α) and a multiplicative constant (factor loading λ):

Y = α + λ ⋅ η + ε

where ε indicates a measurement error (residual) variable. The mean (or expec-
tation) E(.) of Y in the congeneric measurement model is given by

E(Y) = α + λ ⋅ E(η)

because the mean of a constant (α) is equal to the constant itself and ε as a 
measurement error variable has a mean of zero. Therefore, when λ = 1 (as in, 
e.g., the tau- equivalent and tau- parallel measurement models of classical test 
theory), the mean of Y is equal to the mean of η plus a constant α. When E(η) = 0 
(i.e., when the latent variable is mean centered), the mean of Y is equal to α. The 
latter case is the default in Mplus 8 for conventional confirmatory factor and 
structural equation models (latent variable means are set to zero, and observed 
variable intercepts are estimated as the default).
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I (arbitrarily) chose Time 1 as the reference time point to make comparisons to. 
The constant of 1 in the triangle in Figure 2.3 adds both a mean to the reference 
trait factor ξ1 and constant intercepts αi to all Yt variables except Y1. For Y1, the 
intercept α1 remains fixed at zero. This makes Y1 a so-called reference indicator 
and allows us to identify the trait factor mean E(ξ1) as the mean at Time 1 (the 
reference time point). This can be seen by applying algebraic rules for means of 
linear combinations (see Box 2.4). The means of the remaining observed vari-
ables Y2, Y3, and Y4 can now be different from the mean of Y1 because Y2, Y3, and 
Y4 have additional additive constants αt. These constants reflect the mean differ-
ences relative to Y1. The model can be described by the following measurement 
equation:

Yt = αt + ξ1 + εt, where α1 = 0

The choice of the reference variable for which the intercept remains fixed 
at zero is arbitrary from a mathematical point of view (different choices of the 
reference variable lead to the same model-implied covariance and mean struc-
ture and result in the same model fit). However, some choices may lead to more 
readily interpretable results than others. The choice should be based on which 
mean comparisons are most interesting to the researcher. Often, it will be useful 
to make comparisons relative to Time 1, which is what I show in the example 
presented later in this section.

FIGURE 2.3.  Path diagram of the random and fixed intercepts model for a single 
observed variable Yt that is measured on four time points. ξ1 = trait factor at Time 1; εt = 
measurement error variable; αt = constant (fixed) intercept coefficient.
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1
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In summary, the random and fixed intercepts model estimates the follow-
ing parameters:

•	 the trait factor mean E(ξ1),

•	 the trait factor variance Var(ξ1),

•	 n – 1 intercept constants αt, t = 1, . . . , n, and

•	 n measurement error variances Var(εt), one for each for each time point 
t = 1, . . . , n.

Therefore, the model in general has 2 ⋅ n + 1 free model parameters. In 
our example with four time points, we thus have 2 ⋅ 4 + 1 = 9 free parameters 
to estimate. Given that we have 14 pieces of available information (four Yt vari-
ances, four Yt means, and six unique Yt covariances), the model has 14 – 9 = 5 df. 
In Box 2.5, I explain how the random and fixed intercepts model can be defined 
based on the concepts of LST-R theory.

Figure 2.4 illustrates the types of trait-change patterns that the random 
and fixed intercepts model permits. It can be seen that the model allows for true 
changes in the trait scores across time, but the amount of change has to be the 
same for all individuals. Such strictly homogeneous change would be expected, 
for example, if an intervention or other event had the exact same effect on all 

Time 1 Time 2 Time 3 Time 4

Individual 1

Individual 2

Individual 3

ξt(u)

FIGURE 2.4.  Illustration of possible model-implied trait-change patterns in the ran-
dom and fixed intercepts model for three hypothetical individuals. It can be seen that 
the model implies equal amounts of changes in the trait scores for all individuals. In this 
example, there is no change between Time 1 and Time 2 (i.e., α2 = 0).
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BOX 2.5. Defining the Random and Fixed Intercepts Model Based 
on LST‑R Theory

From the perspective of LST-R theory, the random and fixed intercepts model 
can be defined by making a slight modification to Assumption 1 made for the 
random intercept only model presented in Box 2.2:

1. Essential ξ-equivalence: Without loss of generality, let ξ1 be the reference 
trait variable. The latent trait variables ξt for all other time points t > 1 
differ from ξ1 only by an additive constant, such that ξt = αt + ξ1 for all 
t = 1, . . . , n, where αt denotes a real constant and α1 = 0.

2. No situation or person × situation interaction influences: All latent state 
residual variables are zero, ζt = ζs = 0 for all t, s = 1, . . . , n.

Instead of assuming strict equivalence of the traits for different time points, 
we now only assume essential equivalence. That is, the trait variables are now 
allowed to differ but only by an additive constant. This implies that, although 
the trait (and observed variable) means can differ between time points, individ-
uals’ trait scores are still perfectly correlated across time. The second assump-
tion is analogous to the assumption made in the random intercept model (see 
Box 2.2).

Notice that here we do not need to make an assumption regarding the 
uncorrelatedness of the trait factor ξ1 and the error variables εt. This is because 
we chose the trait at Time 1 to serve as a “common” trait factor. According to 
LST-R theory, a trait variable is by definition uncorrelated with all error vari-
ables that are measured at either the same or future time points (see Chapter 1, 
Box 1.2). Hence, ξ1 is by definition uncorrelated with all εt in this model. How-
ever, an assumption about uncorrelated trait and error variables would have to 
be made if a trait variable other than ξ1 were chosen as reference to prohibit 
correlations of the trait variable with prior error variables.

Note that the random and fixed intercepts model is equivalent to the model 
of essential tau equivalence in CTT that is frequently used in cross- sectional 
psychometric analyses. The essential tau- equivalence model of CTT assumes 
that a set of observed variables measure the same construct, but that they can 
differ in their difficulty (means).
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participants or if developmental paths were strictly homogeneous across indi-
viduals. Like the random intercept model, the random and fixed intercepts 
model implies that no situation or person × situation interaction effects are rel-
evant to the given construct or reflected in the measure.

2.3.3	Variance Decomposition and Reliability Coefficient

The variance decomposition and reliability coefficient in the random and fixed 
intercepts model are analogous to the random intercept model:

Var(Yt) = Var(ξ1) + Var(εt)

Rel(Yt) = Var(ξ1) / Var(Yt)

= Var(ξ1) / [Var(ξ1) + Var(εt)]

= 1 – {Var(εt) / [Var(ξ1) + Var(εt)]}

The reliability coefficient has the same meaning and interpretation as in CTT as 
well as in the random intercept model.

2.3.4	Mplus Application

Below I discuss an illustrative application of the random and fixed intercepts 
model in Mplus. I again refer to a fictitious data set from N = 300 individuals 
whose IQ scores were recorded on four measurement occasions and are repre-
sented by observed variables Y1 through Y4. The random and fixed intercepts 
model can be specified in Mplus using the following commands:

MODEL: KSI1 by Y1-Y4@1;
  [Y1@0 Y2-Y4*];
  [KSI1*];

It can be seen that the only difference in the model specification relative to 
the random-intercept-only model is in the second line of code, which now only 
sets the first intercept (of Y1) to zero and estimates the remaining three inter-
cepts (of Y2, Y3, and Y4).

I focus on the unstandardized parameter output for the random and fixed 
intercepts model because the main new feature of this model lies in the possi-
bility of studying mean differences between time points through estimation of 
the constant intercept parameters αt. (The standardized loadings and reliability 
estimates that are provided as part of the STDYX output are interpreted in the 
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same way as for the random intercept model described in Section 2.2.) The 
unstandardized output for the random and fixed intercepts model provides the 
estimates of the latent trait factor mean and variance, observed variable constant 
intercepts αt, and estimates of the measurement error variances (RESIDUAL 
VARIANCES).

MODEL RESULTS
                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value
 KSI1     BY
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.000      0.000    999.000    999.000
    Y3                 1.000      0.000    999.000    999.000
    Y4                 1.000      0.000    999.000    999.000
 Means
    KSI1             100.107      0.887    112.830      0.000
 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2                -0.669      0.432     -1.546      0.122
    Y3                -2.904      0.415     -6.994      0.000
    Y4                -4.735      0.402    -11.787      0.000
 Variances
    KSI1             210.102     17.688     11.878      0.000
 Residual Variances
    Y1                26.056      2.843      9.164      0.000
    Y2                30.050      3.137      9.578      0.000
    Y3                25.682      2.812      9.135      0.000
    Y4                22.357      2.577      8.676      0.000

The mean of the trait factor (100.107) in this model represents the trait 
mean at Time 1. The intercepts αt for Y2, Y3, and Y4 indicate the trait mean dif-
ferences relative to the Time-1 trait mean. The intercept for Y2 is estimated to be 
–0.669, indicating a smaller mean at Time 2 relative to Time 1. However, this 
mean difference is not statistically significant at the .05 level as indicated by the 
standard error and z test for this parameter, SE = 0.432, z = –1.546, p = .122. In 
other words, the null hypothesis of equal means between Times 1 and 2 cannot 
be rejected for alpha = .05. In contrast, the estimated intercept for Y3 (–2.904) 
is negative and statistically significantly different from zero (SE = 0.415, z = 
–6.994, p < .001). This indicates that there was a decline in IQ means between 
Time 1 and Time 3. The Time-4 intercept (–4.735) is also statistically significant 
(SE = 0.402, z = –11.787, p < .001), indicating that the same trend continues 
(there is a further decline in average IQ scores beyond Time 3). Overall, from 
Time 1 to Time 4, each individual showed a “loss” of close to 5 IQ points in this 
hypothetical study.1
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2.3.5	Summary

The random and fixed intercepts model can be seen as an extension of the ran-
dom intercept model. By allowing for an additive constant αt, the random and 
fixed intercepts model relaxes the assumption of no mean changes across time 
made in the random intercept model. It still assumes that there are no individual 
differences in trait change over time and no situation or person × situation inter-
action effects.

The random and fixed intercepts model is just identified when there are 
only two time points. In this case, the model is saturated and does not contain 
testable restrictions. For three or more time points, the model becomes over
identified and allows testing whether the covariances between all Yt variables 
are equal in the population.

The random and fixed intercepts model implies that the same true trait 
score differences that are reflected in the constant intercept parameters αt 
apply to every individual. This does not seem very realistic for most longi-
tudinal studies (including a population-based study on intelligence in which 
one would expect that some individuals’ IQ scores change more than others’ 
and/or that some individuals show no changes at all). Thus, the random and 
fixed intercepts model is appropriate only when a researcher hypothesizes 
that all individuals’ trait scores changed by the same amount. The next model 
addresses the issue of interindividual differences in intraindividual changes to 
some extent.

2.4	 THE ξ‑CONGENERIC MODEL

2.4.1	Introduction

Figure 2.4 illustrated the rather restrictive change process implied by the random 
and fixed intercepts model. According to the model, all individuals changed by 
the exact same amount. Any additional changes in the observed scores would 
represent measurement error. This is fairly unrealistic in practice. Individuals 
often differ in how much they change (i.e., there are true interindividual differ-
ences in intraindividual change). The random and fixed intercepts model does 
not permit a change process in which some individuals’ true scores change more 
than those of other individuals. In the single-factor approach, this limitation can 
be addressed to some extent by relaxing another implicit constraint made in the 
two previous models. In this section, I describe a single-factor model that I refer 
to as the ξ-congeneric model. The ξ-congeneric model freely estimates not only 
constant intercepts but also factor loadings.
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2.4.2	Model Description

The ξ-congeneric model is depicted in Figure 2.5. It can be seen that, in addition 
to estimating additive constants (intercepts) αt, the model also permits Y2, Y3, 
and Y4 to have freely estimated multiplicative constants (factor loadings) λt. Y1 
again serves as a reference indicator with α1 = 0 and λ1 = 1. Therefore, the scale 
and mean of the trait factor ξ1 are identified via the reference indicator Y1. As a 
consequence of estimating both intercepts and loadings for Y2, Y3, and Y4, indi-
viduals’ trait scores at Times 2, 3, and 4 can differ from their ξ1 score by both an 
additive constant (αt) and a multiplicative constant (λt):

ξt = αt + λt ⋅ ξ1

It is again arbitrary from a mathematical point of view which time point 
we select to serve as reference point. Here, for consistency, we again select Time 
1, making Y1 the reference indicator. The model is described by the following 
measurement equation:

Yt = αt + λt ⋅ ξ1 + εt, where α1 = 0 and λ1 = 1

The ξ-congeneric model parallels the model of tau-congeneric variables 
in CTT (Jöreskog, 1971a). The tau-congeneric model of CTT assumes that a 

FIGURE 2.5.  Path diagram of the ξ-congeneric model for a single observed variable Yt 
that is measured on four time points. ξ1 = trait factor at Time 1; εt = measurement error 
variable; αt = constant (fixed) intercept coefficient; λt = constant factor loading (slope) 
coefficient.
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set of observed variables measure the same construct, but that they can dif-
fer in their difficulty (means) as well as in their discrimination (slope) and/or 
in scaling (the units of measurement can differ between variables). Given its 
close relationship to the tau-congeneric CTT model, I refer to the model as the 
ξ-congeneric model.

In summary, the ξ-congeneric model estimates the following parameters:

•	 the trait factor mean E(ξ1),

•	 the trait factor variance Var(ξ1),

•	 n – 1 intercept constants αt, t = 1, . . . , n,

•	 n – 1 multiplicative constants λt, t = 1, . . . , n, and

•	 n measurement error variances Var(εt), one for each for each time point 
t = 1, . . . , n.

Therefore, the model in general has 3n free model parameters. In our exam-
ple with four time points, we thus have 3 ⋅ 4 = 12 free parameters to estimate. 
Given that we have 14 pieces of available information (four Yt variances, four Yt 
means, and six unique Yt covariances), the model has 14 – 12 = 2 df. In Box 2.6, 
I explain how the ξ-congeneric model can be defined based on the concepts of 
LST-R theory.

FIGURE 2.6.  Illustration of possible model-implied trait-change patterns in the 
ξ-congeneric model for three hypothetical individuals. It can be seen that, although 
the model allows for individual differences in the amount of trait change, individuals’ 
trait scores remain perfectly correlated across time. In this example, there is no change 
between Time 1 and Time 2 (i.e., α2 = 0 and λ2 = 1).

Time 1 Time 2 Time 3 Time 4

Individual 1

Individual 2

Individual 3

ξt(u)
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Figure 2.6 illustrates the types of change patterns that the ξ-congeneric 
model permits. Not surprisingly, the ξ-congeneric model also allows for true 
changes (i.e., changes in the trait scores) across time. In addition, the change 
patterns are less restrictive than in the random and fixed intercepts model 
because of the freely estimated factor loadings. Now individuals are allowed 
to differ from one another also in how much their trait scores change. However, 
there is still an important restriction in the ξ-congeneric model with regard to 
interindividual differences in change across time. That is, the trait scores remain 
perfectly correlated across time so that the rank order of individuals remains 
constant over time.

BOX 2.6. Defining the ξ‑Congeneric Model Based on LST Theory

Using LST-R theory, we can define the ξ-congeneric model by assuming that 
the trait variables for different time points are positive linear functions of one 
another.* This can be referred to as the assumption of ξ-congenericity:

1. ξ-congenericity: Without loss of generality, let ξ1 be the reference trait 
variable. The latent trait variables ξt for all other time points t > 1 are 
positive linear functions of the reference trait variable ξ1, such that ξt =
αt + λt ⋅ ξ1 for all t = 1, . . . , n, where αt and λt denote real constants, α1

= 0, λ1 = 1, and λt > 0.

2. No situation or person × situation interaction influences: All latent state 
residual variables are zero, ζt = ζs = 0 for all t, s = 1, . . . , n.

The trait variables are now allowed to differ from ξ1 not only by an addi-
tive constant (αt) as under the assumption of essential ξ-equivalence, but also 
by a multiplicative constant (λt). Nonetheless, individuals’ trait scores are 
still perfectly correlated across time even under the weaker assumption of 
ξ-congenericity, because the trait variables at different time points are still per-
fectly linearly related according to Assumption 1. The second assumption is the 
same as in the two previously discussed models.

Again, we do not need to make an assumption about uncorrelated ξ1 and 
εt, because ξ1 is by definition uncorrelated with all εt according to LST-R theory. 
(Such an assumption would have to be made if a trait variable other than ξ1 were 
selected as a reference trait.)

* It appears unlikely that the trait variables for the same measure would ever be negatively
correlated across time. Therefore, I assume positive linear functions, implying that the trait 
variables are perfectly positively correlated.
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2.4.3	Variance Decomposition and Reliability Coefficient

The variance decomposition in the ξ-congeneric model is given by

Var(Yt) = λ2
t ⋅ Var(ξ1) + Var(εt)

Notice that the multiplicative constant (factor loading) λt now has to be taken 
into account. The ξ-congeneric model also allows estimating indicator reliability 
at each time point:

Rel(Yt) = λ2
t ⋅ Var(ξ1) / Var(Yt)

= λ2
t ⋅ Var(ξ1) / [λ

2
t ⋅ Var(ξ1) + Var(εt)]

= 1 – {Var(εt) / [λ
2
t ⋅ Var(ξ1) + Var(εt)]}

The reliability coefficient Rel(Yt) again has the same meaning and interpre-
tation as in previously discussed models.

2.4.4	Mplus Application

Below I describe a hypothetical application of the ξ-congeneric model to N = 
300 individuals who provided IQ data on four measurement occasions. The 
model can be specified in Mplus by using the following commands:

MODEL: KSI1 by Y1@1 Y2-Y4*;
  [Y1@0 Y2-Y4*];
  [KSI1*];

Notice that the loadings for Y2, Y3, and Y4 in the BY statement are no longer 
fixed to unity. The output for the ξ-congeneric model provides the estimates 
of the factor loadings for Y2, Y3, and Y4, latent trait factor mean and variance, 
observed variable fixed intercepts, and estimates of the measurement error vari-
ances:

MODEL RESULTS
                                                    Two-Tailed
                    Estimate       S.E.  Est./S.E.    P-Value
 KSI1     BY
    Y1                 1.000      0.000    999.000    999.000
    Y2                 1.517      0.041     37.389      0.000
    Y3                 1.965      0.049     40.214      0.000
    Y4                 2.679      0.063     42.245      0.000

38    Longitudinal Structural Equation Modeling with Mplus	
Cop

yri
gh

t ©
 20

20
 Th

e G
uil

for
d P

res
s



 Means
    KSI1             100.107      0.870    115.034      0.000
 Intercepts
    Y1                 0.000      0.000    999.000    999.000
    Y2               -46.318      4.102    -11.290      0.000
    Y3               -91.251      4.939    -18.474      0.000
    Y4              -162.264      6.410    -25.316      0.000
 Variances
    KSI1             200.144     18.450     10.848      0.000
 Residual Variances
    Y1                27.053      2.453     11.027      0.000
    Y2                34.831      3.516      9.905      0.000
    Y3                35.856      4.317      8.305      0.000
    Y4                42.155      6.708      6.284      0.000

The mean of the trait factor again represents the mean at Time 1 (100.107). 
The intercepts for Y2, Y3, and Y4 were all estimated to be negative. The inter-
cepts in this model no longer directly indicate the mean difference relative to 
the Time-1 mean because the factor loadings (multiplicative constants) now 
also have to be taken into account when calculating the means from the model 
parameters—unless all loadings are estimated to be exactly 1.0 (see Box 2.4). 
The estimated loadings for Times 2, 3, and 4 in this example are all larger than 
1.0, so that the mean differences cannot be directly inferred from the intercepts. 
However, using the formulas presented in Box 2.4, we can compute the means 
for Times 2, 3, and 4 in Mplus using the MODEL CONSTRAINT option (see Box 
2.7 on pages 40–41 for details). For this purpose, we change the MODEL state-
ment for the ξ-congeneric model in the Mplus input file as follows:

MODEL: KSI1 by Y1@1
               Y2* (l2)
               Y3* (l3)
               Y4* (l4);
       [Y1@0];
       [Y2-Y4*] (a2-a4);
       [KSI1*] (E1);
MODEL CONSTRAINT:
NEW(E2 E3 E4);
E2 = a2 + l2*E1;
E3 = a3 + l3*E1;
E4 = a4 + l4*E1;
MODEL TEST:
E1 = E2;
E2 = E3;
E3 = E4;
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BOX 2.7. The MODEL CONSTRAINT and MODEL TEST Options 
in Mplus

The Mplus MODEL CONSTRAINT statement is a special feature of the MODEL
command that is useful when one wants to constrain parameters in complex 
ways or compute model parameters that are not directly estimated by Mplus, 
but that are functions of other model parameters that are directly estimated. An 
example is the ξ-congeneric model, in which a mean is estimated for the first 
trait variable (ξ1) but not for the remaining trait variables (ξ1, ξ2, and ξ3). The 
remaining trait means at Times 2, 3, and 4 are functions of the ξ1 mean as well 
as the relevant factor loadings λt and intercepts αt (see Box 2.4 and text). When 
using MODEL CONSTRAINT to define new parameters, each relevant param-
eter in the conventional MODEL statement has to be given a label or a number 
by using parentheses. For example:

MODEL:
KSI1 by Y1@1
        Y2 (l2);
[Y2] (a2);
[KSI1] (E1);

In this example, l2 is the label chosen for the factor loading λ2 pertaining 
to Y2; a2 is the label chosen for the Y2 constant intercept α2; and E1 is the label 
for the ξ1 trait factor mean E(ξ1). These parameters can now be used in MODEL 
CONSTRAINT to define “new” parameters or to implement complex constraints 
on existing or new parameters. For example, we can compute the mean of ξ2 as 
a new parameter:

MODEL CONSTRAINT:
NEW(E2);
E2 = a2 + l2*E1;

Here, E2 is the new parameter to be defined that refers to the mean of 
ξ2. According to the rule discussed in Box 2.4, E2 is equal to the intercept α2

(labeled a2) plus the loading λ2 (labeled l2) times the mean of ξ1 (labeled E1). 
Notice that the * symbol refers to multiplication within the MODEL CON-
STRAINT option in Mplus.

The MODEL TEST option can be used within the MODEL command to 
test specific constraints on parameters using a Wald test statistic. For example, 
it can be tested whether two means are equal:

MODEL TEST:
E1 = E2;
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Notice that in the modified input, I labeled all estimated loadings (l2, l3, 
l4), intercepts (a2, a3, a4), and the Time-1 trait factor mean (E1) by putting 
the chosen labels in parentheses () behind the relevant parameter. Using these 
labels, I implemented the equations presented in Box 2.4 for the calculation of 
the Time 2, 3, and 4 trait means in the MODEL CONSTRAINT option. To do 
so, I first listed these means in the NEW statement (labeled E2, E3, and E4) to 
indicate that they are to be defined as new parameters. Subsequently, I defined 
each parameter. For example, the Time-2 mean was defined as E2 = a2 + 
l2*E1, where the * symbol refers to multiplication.

Finally, the MODEL TEST option allows us to compute a Wald test of 
equality of means (see Box 2.7). This test can be conducted for just one pair of 
means or for a larger number of mean comparisons. In this case, I requested an 
omnibus Wald test of the null hypothesis that all four means are equal in the 
population. As a consequence of adding the new parameters through MODEL 
CONSTRAINT, we obtain the means as additional parameters in the unstan-
dardized parameter estimate list (MODEL RESULTS section):

MODEL RESULTS
. . .
New/Additional Parameters
    E2               105.587      1.285     82.143      0.000
    E3               105.468      1.642     64.236      0.000
    E4               105.901      2.220     47.706      0.000

It can be seen that the Time 2, 3, and 4 means are each higher by about 5 IQ 
points compared to the Time-1 mean (which was estimated to be 100.107). The 
Wald test indicates at least one significant mean difference (p < .001):

Mplus then provides a Wald test statistic for the null hypothesis that the 
two means are equal in the population as part of the MODEL FIT INFORMA-
TION section in the output file:

Wald Test of Parameter Constraints
          Value                             78.023
          Degrees of Freedom                     1
          P-Value                           0.0000

In this example, the Wald test statistic is significant (p < .001), indicating that 
the null hypothesis of equality of means can be rejected for alpha = .05.
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MODEL FIT INFORMATION
. . .
Wald Test of Parameter Constraints
          Value                             99.494
          Degrees of Freedom                     3
          P-Value                           0.0000

Notice that the Wald test in our example has three degrees of freedom, as it 
simultaneously assesses all four means for equality (similar to an omnibus F sta-
tistic in analysis of variance). The means for Times 2, 3, and 4 do not appear to 
differ much from one another. Single degree of freedom Wald tests with appro-
priate corrections for alpha error inflation (e.g., Bonferroni) can be used to carry 
out post-hoc pairwise comparisons of means (e.g., of Time 1 vs. Time 2).

The fact that the unstandardized factor loadings increased over time in this 
example indicates that there was an increase in the true trait score variability 
across time. That is, true interindividual differences in intelligence increased. 
This can be seen by computing the variances of the trait variables at Times 2, 
3, and 4, which are a function of the loadings and the initial (ξ1) trait variance 
in this model:

Var(ξ2) = λ2
2 ⋅ Var(ξ1) = 1.5172 ⋅ 200.144 = 460.589

Var(ξ3) = λ2
3 ⋅ Var(ξ1) = 1.9652 ⋅ 200.144 = 772.801

Var(ξ4) = λ2
4 ⋅ Var(ξ1) = 2.6792 ⋅ 200.144 = 1,436.442

This increase in the variances corresponds to an increase in the corre-
sponding standard deviations such that SD(ξ1) = 14.15, SD(ξ2) = 21.46, SD(ξ3) = 
27.80, and SD(ξ4) = 37.90. This shows that some individuals’ trait scores showed 
a larger increase than others’, which would not have been permitted in the two 
previously discussed single-factor models. Nonetheless, even the ξ-congeneric 
model implies that individuals’ trait scores remain perfectly correlated across 
time (the rank order of individuals does not change), which is a fairly restrictive 
assumption in many social science applications.

In the standardized solution (not shown here, but part of the materials 
available from the companion website [see the box at the end of the table of 
contents]), we can again inspect the standardized factor loadings, which tell us 
something about the reliabilities of the measurements as well as the extent to 
which our measurements really reflect a trait-like construct. In this example, all 
standardized loadings are again strong, indicating high reliabilities and showing 
that the construct is rather trait-like.
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2.4.5 Summary

Among the three single-factor measurement models discussed, the ξ-congeneric 
model is the most general one. It estimates the largest number of free param-
eters and requires three time points to be just identified (saturated) and four or 
more time points to be overidentified with testable restrictions. The previous 
two models can be seen as special cases of the ξ-congeneric model: the random 
intercept model results when αt = 0 and λt = 1 for all t = 1, . . . , n. The random 
and fixed intercepts model results when only λt = 1 for all t = 1, . . . , n. All three 
models imply that constructs are trait-like. For such constructs, each model 
allows estimating the reliability of the measured variables at each time point.

In contrast to the two previously discussed single-factor measurement 
models, the ξ-congeneric model allows for interindividual differences in trait 
changes across time through the multiplicative parameter λt. However, the 
ξ-congeneric model remains rather restrictive with regard to interindividual 
differences in change across time. The model still requires the trait scores to 
remain perfectly correlated across time, implying a constant rank order of indi-
viduals across time.

2.5	 CHAPTER SUMMARY

In this chapter, I discussed three simple longitudinal models and their appli-
cation in Mplus. All models have in common that they (1) are based on just a 
single repeatedly measured variable and (2) use only a single latent factor.

Single-factor models offer a simple way of testing basic hypotheses about 
change processes. The single-factor random intercept model can be viewed as a 
baseline model for longitudinal studies, as it implies strict stability (no changes 
beyond what can be explained by random measurement error). The random 
and fixed intercepts model allows for changes in trait scores, but implies that 
those changes are strictly consistent across individuals (all people change by the 
same amount). The ξ-congeneric model allows for individual differences in the 
amount of trait changes but still assumes that individuals’ trait scores maintain 
the same rank order across time.

The single-factor approaches have the advantage that they are mathemati-
cally identified already when there are fewer than four time points. Specifically, 
the random intercept model as well as the random and fixed intercepts models 
require only two measurement occasions (n = 2) to be identified. The random 
intercept model is overidentified with df = 1 for n = 2 time points, whereas 
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the random and fixed intercepts model is just identified (saturated; df = 0) for 
n = 2. This means that the random intercept model already contains one testable 
restriction (the restriction of equal means across time) for a design with just two 
measurement occasions. The ξ-congeneric model requires three measurement 
occasions to be just identified (df = 0) and four or more measurement occasions 
to be overidentified with df > 0.

All three single-factor models have some important limitations. As men-
tioned above, the change processes implied by the models may be too restric-
tive for many empirical phenomena. Furthermore, the definitions of the models 
based on LST theory showed that each of the models implies a strict trait-like 
nature of the construct under study. In other words, no situational influences or 
person × situation interactions are allowed in the models. As a consequence, the 
models cannot be used to examine the degree to which measures may reflect 
situation and/or person × situation interaction influences, and they tend to 
underestimate the reliabilities of less than perfectly trait-like measures.

In the next chapter, I discuss models for single-indicator data that contain 
more than one latent variable. Models with multiple latent variables address 
some of the limitations of single-factor models. In particular, they allow for more 
flexibility in the modeling of individual differences in changes over time. More-
over, some multifactor models also allow for a separation of trait, state, and 
measurement error influences.

2.6	 RECOMMENDED READING

Duncan, T., Duncan, S., & Strycker, L. (2006). An introduction to latent variable growth 
curve modeling: Concepts, issues, and applications (2nd ed.). Mahwah, NJ: Erl‑
baum.

NOTE

1.	 In addition to tests of statistical significance, researchers should also consider 
measures of effect size (e.g., Kline, 2020). This is because p-values in tests of 
significance are heavily influenced by sample size and contain no information 
about the practical significance of a given effect. In the hypothetical example, 
depending on the time interval, a raw mean difference of close to 5 IQ points 
over the course of a study may be seen as a rather large effect.
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