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This chapter focuses on the principles connected to projections—the trans-
formation of spherical coordinates to planar coordinates—you will need for 
work with GI for making maps and other purposes. Chapter 4 also presents 
some historical background and specific details of various projections.

Projections occupy one of the most essential roles in cartography for 
geography and GI. For some people, this role may arguably be perhaps the 
most essential, because most GI is “projected,” even if the projection infor-
mation never shows up on a map. This has started to change as more and 
more GI is collected and stored in latitude and longitude coordinates, which 
are not projected and commonly used in online mapping. But even if all the 
data you need and want is available in latitude and longitude coordinates, 
you will probably need to project it to make the sort of map that people are 
familiar with, or combine it with data collected using another projection.

Maps without Projections

Some people would claim that if a thing or event is shown on a map, it must 
be projected. In most cases this is true—and for good reasons. But there 
are exceptions. These exceptions are important enough to pay attention to. 
The first exception was already mentioned: locations stored in latitude and 
longitude coordinates are not projected—they are spherical coordinates. It’s 
even possible to make a planar (flat) map with these coordinates in a grid, 
but such a map is greatly distorted and as a result can be misleading. The sec-
ond exception is the maps drawn following artistic or design criteria rather 
than scientific concerns. Usually these maps are used for advertisements, but 
they can also be used to show transportation networks, to illustrate tourist 
destinations, and to serve other popular forms of communication. The third 
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exception, globes, is a nonprojected way of showing things, events, and rela-
tionships without the distortion of projections. A global tesselation using 
hexagons or octahedrons to subdivide the sphere is another nonprojected 
way of representing a round surface.

A Brief History of Projections

The reasons for using projections go back to desires to accurately repre-
sent the spherical surface of the earth on flat maps. For GI and a map to 
be useful, the locations and relationships must be accurate. The uses of a 
nonprojected map using latitude and longitude coordinates (historically 
these were determined by the use of sextants, cross-staff, etc.; today they’re 
mostly determined by GPS—see Figure 5.1), or an advertising map showing 
simple directions, are limited by their inaccuracy. You can use such a map 
with directions to the new amusement park to find your way there, even if 
you’re not from the area, but you can’t use it in most cases to navigate to the 
beach or swimming pool. Its limits mean you won’t be able to discover and 
understand the relationship of the amusement park to things and events not 
shown on that map. Importantly, because of the curved surface of the earth, 
nonprojected maps of larger areas showing locations and sizes of things and 
events would be inaccurate. The Euclidean geometrical measure of the dis-
tances on the earth’s surface, which is the most common geometry—already 
practiced by the ancient Egyptians—cannot take its curvature into account, 
but instead uses a Cartesian coordinate system and a projection that have 
already taken the spherical shape of the earth into account. Thinking about 
other possible uses, projections make it easier to compare GI and maps of 
the same area because they provide a framework for people and organiza-
tions to systematically locate things and events.

As you can probably already imagine, it is no surprise that the first maps 
were based on work by geographers who were locating things and figuring 

Figure 5.1.  Latitude and longitude lines.
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out relationships among events. Ptolemy (c. 100–168) wrote the book Geog-
raphy with the location of cities, coasts, and other important places of the 
world known to the ancient Greeks. The Romans may have used this book 
for making a map that showed, in a greatly distorted manner, Europe, North 
Africa, the Near East, and India, even indicating China. The original and all 
copies of this map were lost, except for one, a re-creation done in the 15th 
century that is now known as the Tabula Peutingeriana.

While maps such as the Tabula Peutingeriana and many others had 
been used for a very long time, maps that show location accurately have only 
been around for some 400 years, once it was discovered how to determine 
longitude. Cartographers until then could only accurately determine the lat-
itude of places. This means that while the equator could commonsensically 
be calculated as the halfway place between the north and south poles, the 0° 
starting measure for longitude was only agreed to in the late 19th century 
and placed in Greenwich, England. Up until then, 0° longitudes started from 
different locations including Paris and the Faro Islands. Knowing where the 
starting measure of longitude is located is crucial for accurate navigation. 
Before there was widespread agreement about where the starting (0°) longi-
tude is for all people and countries, an arbitrary starting longitude was fine 
so long as it was used systematically.

Roles of Projections

One of the key roles of projections has been in the production of maps for 
navigation, naval or aeronautical in most cases, which are called charts. The 
development of accurate ways to determine location went hand-in-hand with 
the growth of European naval powers. However, because these are spheri-
cal coordinates, and mariners needed flat maps to take with them, projec-
tions became crucial. The Mercator projection is perhaps so commonplace 
because a straight line in this projection shows a constant compass bearing. 
You should remember that there are many other projections, but the Mer-
cator projection possesses the quality that lines of a constant direction are 
straight lines.

Because of this character, the Mercator projection was very important 
for navigation on water by compass, but other modes of transportation can 
better use other projections. More recently, since airplanes began to fly reg-
ularly across and between continents, another type of projection was needed 
for their navigation. A line of a constant compass direction may be straight 
in the Mercator projection, but this line does not show the shortest distance. 
The shortest route for an airplane high above the earth’s surface is not a 
straight line, but a line on a sphere, called the great circle distance (see 
Figure 5.2).

Different projections are used for maps with different roles. The size of 
the area to be mapped, the desired projection properties, and the charac-
teristics of the GI and map are the key determinants. The size of the area 
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distinguishes basically between the whole world, a continent, a state or prov-
ince, a region, a county or city, and still smaller units. Different projections 
fit different areas better or worse, depending on their use. The Mercator 
projection is quite inaccurate for comparing the sizes of areas because of dis-
tortion near the poles, but is quite useful for maps used in navigation. A pro-
jection property refers to whether the projection represents angles, areas, 
or distances (from one or two points) as they are found on the surface. No 
projection retains both angles and areas. A projection can retain one projec-
tion property—for example, the Mercator projection preserves angles. All 
transverse (turned 90° to be oriented north–south) Mercator-projected GI 
and maps are useful for mapping north–south oriented small areas because 
this projection is conformal and also preserves shapes over small areas along 
the line of tangency where the projection theoretically touches the earth’s 
surface. The characteristic of the GI or map indicates how the projection 
should show geographic relationships and scales. Choosing a projection that 
preserves one projection property often leads to other distortions. For an 
individual state or province, a projection that maintains constant area to 
make comparisons of areas possible is beneficial, even if some shapes over 
a larger area may begin to look distorted. Indeed, larger areas are hard to 
show without distortion in any case; many projections commonly used for 
world maps compromise and distort both area and shapes. Why distortion is 
commonplace for projections, what are the projection properties and char-
acteristics, and how to choose a projection is discussed later in this chapter.

Making Projections

Even if you are only going to use maps and will never work with GI, you need 
to know some important things about projections. The first is that projec-
tions make use of different models of the earth. Generally, projections for 
the entire earth use a simple spheroid. When dealing with maps or GI of the 
entire world, the loss of accuracy is slight compared to the resolution of the 

Figure 5.2.  Great circle path between Minneapolis, USA, and Frankfurt, Germany. 
The great circle distance is 4,392 miles.
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GI or detail of the map. Projections needed for more detailed purposes or 
smaller areas of the earth use an ellipsoid (see Figure 5.3), with even more 
axes, that generally fits the actual shape of the earth. For very detailed pur-
poses and the highest levels of accuracy, people use a geoid, often optimized 
for the shape of the earth in one particular and relatively small area (see 
Figure 5.4).

While this may seem needlessly complex, you should remember that 
because the earth is constantly changing shape (and not only from volcanoes 

Making Projections with Light

Although most projections are calculated 
mathematically, the underlying transfor-
mation from a three-dimensional to a two-
dimensional representation of all projections 
can be physically constructed with the aid 
of a few common items: a light (flashlight or 
lamp), a two-liter plastic bottle, a lampshade, 
and a piece of wax paper or flat plastic you 
can draw on. You will write on all of these 
items, so you need to be sure they are no 
longer needed.

To make the construction surfaces, you 
will need to prepare the plastic bottle by cut-
ting off the top and bottom carefully with a 
scissors or knife. The lampshade and the flat 
wax paper or plastic are ready to be used as 
they are. On each of these objects you should 
mark a series of horizontal and vertical lines. 
On the lampshade and piece of wax paper or 
plastic, they should radiate from the center. 
On the lampshade, they should, if extended, 
meet each other at an imaginary point above 

the top of the lampshade; on the wax paper 
or plastic, they should radiate from a circle 
located at the center.

The construction surfaces you made 
correspond to the developable surfaces 
used in cylindrical, conic, and planar types 
of projections. To show how each develop-
able surface is used, take a flashlight or light 
placed at the middle of the bottle or lamp-
shade or behind the wax paper or plastic sur-
face and shine the light source at a nearby 
wall or piece of paper. (It usually helps to dim 
the room lights when you do this.)

What you see on the wall or paper is the 
projected surface that corresponds to each 
type of projection. Try moving the light, the 
paper, and the construction surface to see 
how the changes affect each projection. 
These changes correspond to parameters 
used in the construction of map projections 
discussed in this chapter.

Figure 5.3.  Reference ellipsoid showing 
major parameters.
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and earthquakes, but gradual movements that are imperceptible to people), 
different uses need different levels of positional accuracy. On one extreme, 
a map showing worldwide the most visited tourist sites for the last 10 years 
needs very little accuracy; on the other extreme, an engineer’s plan of a 2-km 
tunnel for a new railroad needs extremely great accuracy. Most GI and map-
ping activities need a level of accuracy somewhere in between—often the cost 
of preparing the GI and the available budget determine the accuracy.

What makes all this complicated for working with GI and maps is that 
there is no standard earth model, or geoid model, or spheroid model, or 
ellipsoid used to represent locations on earth. The use of different models 
makes it paramount for GI users to know the model used for projecting 
the GI, which is often called a “datum” (see below for more information 
about datums). Work on specific models of the earth is done by geographers 
known as geodesists, and information about geoids and datums is geodetic 
information.

The Geoid Model

The most accurate model of the earth’s surface is the geoid. The earth, because 
of its constantly changing shape due to tectonic movements and undulations 
of its gravity field, can be described in the most detailed fashion through sets 
of measurements that are used to produce a geoid. The expert geodesists who 
determine geoids and their constants put the geoid model into relationship 
with the planetary body or extremely detailed information about elevations 
in a particular area. Geodesists describe a geoid as the equipotential surface 
of the earth, which means the known earth’s surface under consideration 
of different local strengths of gravity resulting from different masses of the 
earth’s geological makeup, fluctuations in the earth’s core, and other factors. 
For example, the Marianna Trench in the Pacific Ocean and the large bod-
ies of iron ore found in parts of South Asia, Sweden, and many other places 
both locally affect the shape of the earth’s surface because of the lessened or 
increased pull of gravity due to the lesser or greater mass at those locations. 
Basically, what geodesists consider is how differences in the earth’s gravity 
affect the shape and size of the earth. For instance, denser material in the 
earth’s crust, such as iron, influences gravity more than lighter sedimentary 
rocks do. The geoid takes these and other differences into account. These 

Figure 5.4.  In this schematic drawing, an ellipsoid and a geoid represent the 
earth’s surface. The ellipsoid is less accurate than the geoid, but both may not prop-
erly align with actual locations distant from their geospatial optimizations.
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differences are measured in millionths of the earth’s normal gravity, which 
seems small, but the effects on the shape of the earth and location measure-
ments can be large. You can think of the geoid as a collection of many gravity 
vectors, individual gravity forces, each of which is perpendicular to the pull 
of gravity, that distort the earth’s shape from the ideal, yet imaginary, sphere.

Practically, the geoid was until recently only used for specialized pur-
poses for relatively small areas. Geoids were almost always calculated for 
smaller areas because of the complexity and cost of collecting the necessary 
data. With the advent of satellites and improved measuring devices, however, 
data collection has become much easier and geoids have become more com-
mon. They are the reference standard when working with global positioning 
systems (see Chapter 7). The geoid provides vertical location control. Geoid 
positions usually refer to a reference ellipsoid for horizontal location con-
trol and vertical location control. Differences between the ellipsoid positions 
and the geoid positions are called “geoid undulations,” “geoid heights,” or 
“geoid separations.” The horizontal and vertical locations of the projection 
surface based on an ellipsoid can be adjusted to the irregular shape of the 
geoid compared to the regular mathematical surface of an ellipsoid through 
geodetic techniques.

The Ellipsoid Model

The ellipsoid (also called a spheroid in some cases) is the most commonly 
used model for projections of GI and maps. It includes the noticeable dis-
tortion between the length of the earth’s north–south axis and its equator, 
which bulges a small amount due to the centrifugal force of the earth’s rota-
tion. In the simplest mathematical form, it consists of three parameters:

•	 An equatorial semimajor axis a
•	 A polar semiminor axis b
•	 The flattening f

Mapmakers and geodesists have produced many ellipsoids. John Snyder 
wrote that between 1799 and 1951 twenty-six ellipsoid determinations of the 
earth’s size were made. Each of these ellipsoids has a history and sheds light 
onto the science, culture, politics, and personalities involved in establishing 
the ellipsoid through complicated and challenging field survey coupled with 
exhaustive calculations. Ellipsoids were developed to have a more accurate 
reference for mapping, to satisfy individual ambition, to serve national goals, 
to make more accurate measurements, and so on. The surveys conducted 
to create ellipsoids were often ambitious expeditions into the remote areas 
of the world and continue to provide the material for many stories. Mul-
tiple ellipsoids were developed and refined as measurements improved, and 
ellipsoids have often been specially defined for specific areas—for example, 
for U.S. counties. Working with data or maps from different periods often 
involves determining if different ellipsoids were used in collecting data; data 
from different coordinate systems, even if in the same area, may also have 
different ellipsoids (see Table 5.1).
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The spheroid is the simplest model of the earth’s surface, using only a single 
measurement to approximate the shape of the earth’s surface for GI and 
maps. This measurement is the distance from the hypothetical center of the 
earth to the surface, or, in geometrical terms, the radius. The mean earth 
radius RE is 3,959 miles (6,371.3 km). It is very inaccurate for many GI uses 
and you should only use the spheroid for scales smaller than 1:5,000,000,000. 
The inaccuracies of this model of the earth’s surface are not apparent at 
these small scales. It is much easier to calculate the projections using a spher-
ical model but using the spheroid for projecting GI and making maps for 
scales larger can lead to grave inaccuracies.

Putting the Models Together: Demythologizing the Datum

Datum is the term used to refer to the calibration of location measurements 
including the vertical references, horizontal references, and particular pro-
jections or versions of projections—for example, the North American Datum 
1927 (NAD 27) or the North American Datum 1983 (NAD 1983). Datums 
constitute one of the most confounding aspects of working with projections 
for many GI and map users. For most intents, this term simply specifies the 
model of the shape of the earth at a particular point in time and often for a 
particular area—for example, North America, Europe, or Australia. A hori-
zontal datum is often the basis for determining an ellipsoid used in a pro-
jection for a coordinate system (see Chapter 6). A datum can be used with 
different projections—for example, the NAD 1927 is used with both the Lam-
bert and the transverse Mercator projections. For GI users, datums are refer-
ences to a set of parameters needed for measuring locations and the basis 
for projections. Because there are many parameters and the mathematics for 
transforming datums is highly complex, many people have been stymied by 
datums. But it is really, for most general purposes, quite simple: the datum 
refers to a reference surface for making positional measurements. While 
most datums in North America are described in technical guidelines or even 
laws, theoretically a datum can be defined by any government agency or 
private group as it sees fit.

TABLE 5.1. Selected Ellipsoids Parameters

Name Semimajor axis Semiminor axis Flattening

Bessel (1841) 6,377,483.865 m 6,356,079.0 m 1/299.1528128

Clarke (1866) 6,378,206 m 6,356,584 m 1/294.98

Krassovsky (1940) 6,378,245 m 6,356,863.03 m 1/298.3

Australian (1960) 6,378,160 m 6,356,774.7 m 1/298.25

WGS (1984) 6,378,137 m 6,356,752.31425 m 1/298.257223563
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Datums distinguish between horizontal and vertical references and 
local and geocentric datums. A datum should (but might not) contain both 
horizontal and vertical references. Horizontal references are used to mea-
sure the location of positions on the earth and vertical datums are used to 
measure the elevation of a position. You can think of a vertical datum as 
the base level used in recording elevations or the mean height of tides. All 
elevations using the vertical datum are related to this zero elevation. Local 
datums, in fact, are used for areas up to the size of continents—for example, 
the NAD of 1927, which made a location on Meades Ranch in Kansas the 
starting point of the triangulation that measured the earth’s undulations 
and put them into relationship with the Clarke 1866 ellipsoid. Geocentric 
datums—for example, the World Geodetic System Datum of 1984—take the 
entire earth into consideration and lack an origin point; they don’t have a 
defined datum point, but are calculated from a network of geodetic observa-
tions. The difference between local datums can be several hundred meters—
for instance, between NAD 1927 and NAD 1983 in some areas of the United 
States. Conversions of measurements between the two systems can become 
quite complex. Fortunately, programs are widely available to transform 
between popular datums—for example, between NAD 1927 and NAD 1983—
for most areas. Datums are constantly being changed and updated. Cur-
rently the most up-to-date U.S. horizontal datum is the North American 
Datum of 1983 (NAD 1983) after the U.S. National Geodetic Survey’s (NGS) 
National Adjustment of 2011 and the most up-to-date U.S. vertical datum is 
the North American Vertical Datum of 1988 (NAVD 1988). The NGS has 
further plans to replace these two datums with new geometric and vertical 
datums including changes in position with time, adding a fourth dimension 
to the system. A few important datums in North America and globally are 
listed in Table 5.2.

Types of Projection and Their Characteristics

Theoretically, the number of possible projections to transform coordinates 
from a spheroid, ellipsoid, or geoid to a planar coordinate system or flat 
map is unlimited; practically, the number is limited only by the creativity of 

TABLE 5.2. Selected Datums

Horizontal datum name Ellipsoid
Local/
geocentric Where used

NAD 1927 Clarke 1866 Local North America

NAD 1983 GRS 1980 Geocentric North America

WGS 1984 GRS 1980 with additional 
measurements

Geocentric World

New Zealand Geodetic 
Datum (NZGD) 2000

GRS 1980 Geocentric New Zealand
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mathematicians and geodesists and the needs of organizations to coordinate 
their creation, maintenance, and use of GI for the many public and private 
uses. To start understanding projections, you should familiarize yourself 
with the three basic developable surfaces, also called “projection families,” 
used to create map projections. Developable surfaces, which are an actual 
or imaginary drawing of the projection, were used to help cartographers 
visualize the projection process (see Figure 5.5). They are no longer used to 
project maps, but they are helpful in understanding projections.

Developable surfaces can be drawn, but many projections are created 
without them. Projections created with developable surfaces can be demon-
strated using a light hung in the middle of a transparent globe or by shining 
a flashlight through a portion of a globe onto the developable surface. For 
example, a two-liter plastic bottle, cut off at both ends and marked with 
a constant interval of vertical lines, with a light bulb hung in the middle 
to project the lines on a wall, will show how a cylindrical projection proj-
ects latitude and longitude on a flat surface. All projections using pseudo-
developable surfaces can only be described mathematically. They cannot be 
created in any mechanical manner.

A key characteristic of all projections, whether developable surface or 
pseudo-developable, is called aspect (see Figure 5.6). The projection aspect 

Figure 5.5.  Basic geometric shapes (cone, cylinder, and plane) serve as devel-
opable surfaces, shown here with a reference globe. The resulting projections of 
latitude and longitude lines are shown in the rightmost column.
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refers to the orientation of the developable surface to the earth. Various con-
ventions have come and gone in cartography over time. For future users of 
GI, I think it is most pragmatic to distinguish among equatorial, transverse, 
oblique, and polar aspects. The differences refer either to the orientation of 
the projection to a region of the earth (equatorial or polar) or to the devel-
opable surface of that type of projection—for example, transverse Mercator 
projections are rotated 90° from the Mercator projection’s usual equatorial 
orientation. The basic differences are best visualized in a figure showing the 
different aspect for each developable surface (see Figure 5.6). The conse-
quences for distortion and accuracy are discussed later in this chapter.

Some possible aspects for conical, cylindrical, and planar projection 
include equatorial and polar. Equatorial orientation has the projection’s cen-
ter positioned somewhere along the equator. Polar aspect occurs only with 
planar projections. All three projections may have an oblique aspect (based 
on Jones, 1997, p. 75).

Tangent/Secant

Figure 5.7 illustrates differences in how projections “touch” the developable 
surface of a reference globe, another important characteristic of projections. 
These places of contact between the developable surface and spheroid, ellip-
soid, or geoid are the most accurate for any projection and are called stan-
dard parallels or standard lines. Tangent projections “touch” the reference 

Figure 5.6.  Some possible aspects for conical, cylindrical, and planar projections.
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globe at one point or along one line. Secant projections “touch” the refer-
ence globe along two lines or in an area.

Projection Properties

Projections alter the four spatial relationships (angles, areas, distances, and 
direction) found on a three-dimensional object. As mentioned earlier in the 
overview of projections, most projections only maintain one of the proper-
ties in a specific manner—for example, equidistant projections preserve dis-
tance from one point to all other points. Many projections, especially projec-
tions used for larger areas, compromise all these properties.

The projections that preserve angular relationships from one point are 
called conformal, but you should remember that conformal refers to the pres-
ervation of angles only, never shapes. Figure 5.8 includes a Lambert confor-
mal conic projection, which preserves angles, but not areas. If a projection 
preserves areas in the projection by a constant scaling factor, it is called an 
equivalent projection. Equivalent projections preserve areas, but not shapes. 
The shapes of continents or countries can change in an equivalent projec-
tion, but their areas correspond to the actual areas on the earth (Figure 
5.8, Sinusoidal projection). Projections that preserve distances from one or 
two points to other points are called equidistant (Figure 5.8, Stereographic 
projection). The projections that preserve directions are called azimuthal, or 

Figure 5.7.  Examples of tangent and secant 
projection surfaces.
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true direction projections. Directions are only preserved from the center of 
the map in azimuthal projections.

Projections that are neither conformal nor equivalent are called com-
promise projections. They are usually developed to make more graphically 
pleasing maps and do this by finding a balance between areal and angular 
distortion (Figure 5.8, Robinson projection).

Some Common Projections, Characteristics, and Uses

With so many projections, it is certainly possible to find a projection for 
every occasion. Fortunately, for most GI uses, the projections are already 
determined. The choices for maps, especially maps of large areas, are much 
broader. The following examples highlight a few widely used projections for 
each of the four projection properties.

Figure 5.8.  These six different projections show the countries of the world.
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Lambert The Lambert conformal conic projection preserves only 
angles. Used for mapping continents or similar areas, it is 
commonly used for areas with an east–west orientation—for 
example, the continental United States.

Sinusoidal The sinusoidal equal area projection preserves areas, but 
distorts angles and shapes. It is used for maps showing 
distribution patterns.

Mercator The very common Mercator projection is a conformal 
projection with the very unusual quality of showing lines 
of constant bearing (called loxodromes or rhumb lines) as 
straight lines. This made the Mercator projection very 
valuable for sailors, who could use one single compass 
heading to determine the direct route between two points. 
Transverse Mercator projections are widely used for areas 
with north–south primary orientations (see Figure 5.9).

Stereographic The widely used stereographic projection is an azimuthal 
projection developed in the 2nd century B.C.E. that 
preserves directions; it is a further development of much 
older stereographic projections. It additionally has the 
particular quality of showing all great circle routes as 
straight lines; however, directions are true from only one 
point on the projection. It is used usually to show airplane 
navigation routes.

Figure 5.9.  A transverse Mercator projection.
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Robinson The Robinson projection is a compromise projection that 
fails to preserve any projection properties. It is graphically 
attractive; it was adopted by National Geographic in 1988 and 
is widely used elsewhere.

Fuller The Fuller projection was introduced in 1954 by 
Buckminster Fuller. It transforms spherical latitude and 
longitude coordinates to a 20-sided figure called the 
icosahedron.

Calculating Projections

Examining the mathematics of projections is helpful for grasping how 
a projection transforms locations measured in three dimensions to two-
dimensional locations. You should always note that projections are never 
transformations between two two-dimensional coordinate systems, but 
between locations found on or near the surface of the three-dimensional 
planet earth to a two-dimensional coordinate system.

The three examples examined here are widely used. The sinusoidal 
projection is a pseudo-cylindrical projection developed in the 16th century; 
the Lambert conformal conic projection is widely used around the world 
for east-to-west-oriented areas; the Mercator projection is very common. 
However, the mathematics for each map projection discussed here are quite 
straightforward, especially since these examples are based on spheroids.

Sinusoidal Projection

The sinusoidal projection is a simple construction that shows areas correctly, 
but shapes are increasingly distorted away from the central meridian. Par-
allels of latitude are straight, and longitudinal meridians appear as sine or 
cosine curves.

The equations for calculating the sinusoidal projection are quite simple. 
You only need to remember to use radians for the angle measures of longi-
tude and latitude and to place a negative sign in front of longitude values 
from the western hemisphere.

Equations for calculating a sinusoidal projection:

x = Rλ(cos φ)
y = Rφ

where φ is the latitude, λ is the longitude, and R is the radius of the earth 
measured at the scale of map.

Lambert Projection

The cylindrical equal-area projection shown here is one of several projec-
tions that Lambert developed in the 18th century. It remains a widely used 
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projection, especially in atlases showing comparisons between different 
countries or regions of the world. Polar areas have strongly distorted shapes, 
but most continents evidence only minor distortion.

Below are equations for calculating a Lambert cylindrical equal-area 
projection:

x = Rl
y = R sin φ

where φ is the latitude, l is the longitude, and R is the radius of the earth 
measured at the scale of map.

In Depth	C alculating Projections with Radians

You may need to use radians for an exercise calculating projections or for other 
angular measures. The sinusoidal projection, many other projections, and other 
measures involving angles are often calculated with radians, which is another form 
of angle measures: 1° = p/180 radians, 360° = 2p radians. Radians indicate the 
length of that part of the circle cut off by the angle, and make it easy to determine 
distances on circular edges or round surfaces.

radians = (degrees · p)/180

The length of part of a circle (called an arc) is determined by multiplying the 
number of radians by the radius. For example, the length of an arc defined by an 
angle of 10° on a circle with a 100-m radius is 0.1745.

1.	 Determine radian measure of angle:

n radians = (10° × p/180)
n radians = 0.1745

2.	 Calculate length of the arc:

arc length = n radians × radius
arc length = 0.1745 × 100 m
arc length = 17.45

Some common angle measures in degrees and their equivalents in radians are 
listed here.

Degrees Radians

90° p/2

60° p/3

45° p/4

30° p/6
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Mercator Projection

The very common Mercator projection uses only slightly more complicated 
equations.

Below are equations for a Mercator projection (Snyder, 1993):

x = Rl
y = R ln tan (p/4 + φ/2)

where l is the longitude (– if in the western hemisphere) for determining 
values of the y axis and φ is the latitude (+ if north, – if south of the equa-
tor) and R is the radius of the earth measured at the scale of the map. The 
term ln refers to the natural logarithm to the base e. All angles again are 
measured in radians.

Distortions

Distortions arising through projections are unavoidable. They have signifi-
cant consequences for accuracy, so it helps to know more about distortions 
in order to choose the best projection for different purposes and to be able 
to take distortions into account.

As a general place to start out, we can categorize distortions in terms 
we have already seen: the four projection properties of angles, areas, dis-
tances, and direction. Many projections distort one or two of these projec-
tion properties. Distortion of angles (including shapes) is sometimes easy to 
detect, especially for large areas when familiar shapes of states, continents, 
or even provinces are distorted; but projections of small areas may lack read-
ily visible evidence of distortions and require the use of special graphics or 
statistical measures to determine the distortions. The same applies to areas. 
The distortions arising related to distance can be significant because, as you 
know now, no projection for large areas accurately shows distances for all 
points, but can only be accurate for a few points. Small areas are another 
matter, but you still should check to see what distortion a projection creates. 
Direction can likewise be distorted in a subtle fashion that is not visually 
noticeable, but is of significance should the map be used for navigation pur-
poses.

One easily overlooked source of distortions is the difference between 
the datums, geoids, and ellipsoids used in creating different GI or maps. 
Even if GI or a map is made by the same agency or company using the same 
projection, a change in the datum, geoid, or ellipsoid can lead to distortions 
when compared with other GI or maps for the same area.

Describing Distortions

To describe and assess distortions, it is useful to determine the scale factor 
(SF) at different places on a map. By comparing scale factors with map scale 
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The Case of Changing Projections and Datums 
in Belgium

Not only famous for beer and chocolate, and 
as the site of much of the European Union 
administration, Belgium has a rich history in 
geography and cartography. Datums specify 
the earth’s size and shape as well as specify-
ing the origin and orientation of a coordinate 
system. This brief history of changes made 
to projections and datums in Belgium shows 
why datums change. When two geographic 
areas (countries) use different projections 
and datums, points on the border between 
the two areas will not match up.

After World War II Belgium adopted a 
new geodetic system, which was based on 
the Hayford ellipsoid (1924), with its initial 
point located at the Brussels Observatory. 
The Lambert conformal conic projection 
with two standard parallels was the projec-
tion chosen to create Belgium’s cartographic 
grid. On this basis a cartographic series at 
the scale of 1:25,000 was established. By 
1972, it had become necessary to create a 
new geodetic datum, Belgium Datum 1972, 
which was based on a new global compen-
sation. This datum also used the Hayford 
ellipsoid, but the initial point had shifted since 
1950. New project parameters were defined, 
constituting the Belgian Lambert 72 (BD72) 
system. Most current topographical maps in 
Belgium use the BD72 coordinates. The sys-
tem can only be used in Belgium.

Spatial geodesy’s advances in the 
second half of the 20th century have made 
it possible to determine and track over time 
the shape of the geoid and position of the 
earth’s center of mass with great accuracy. 
(They are constantly changing, notably due 
to plate tectonics.) The center of mass is the 
starting point for a system with three perpen-
dicular axes (x, y, z). Two are on the plane 
of equator and the third corresponds to the 
direction of the poles. A point may be local-
ized by any triplet of Cartesian coordinates 
and may be below, above, or on the surface 
of the earth. The International Terrestrial Ref-
erence System (ITRS) and World Geodetic 
System (WGS) are based on this principle. 
A reference framework based on satellite 

instruments and earth observations deter-
mines the x, y, z coordinates of several hun-
dred points on earth. The resulting “Frame” 
is referred to by the acronym (initialism) of 
the reference system (e.g., ITRS) followed 
by the year of the observations. In Belgium 
and other countries, geodesists globally 
adjust ellipsoids to the shape of the geoid 
and center them on one center of mass, 
which guides how longitude and latitude are 
determined. The Geodetic Reference Sys-
tem (GRS80) of 1980 was followed by the 
World Geodetic System of 1984 (WGS84); it 
had a slightly different flattening coefficient 
and definition of the geodetic datum and 
ellipsoid. The problem of different countries 
having different geodetic systems resulted 
in a push to standardize the use of WGS84. 
More recently, Belgium has begun to imple-
ment European Terrestrial Reference System 
1989 (ETRS89). This is the EUREF system 
recommended for European cartographical 
and topographical activities. In Belgium a 
GPS collection of point locations for around 
4,200 points using ETRS89 coordinates was 
used to create the Belgian geodetic frame, or 
BEREF. The GRS80 ellipsoid is associated 
with BEREF and was used as the basis for 
the new 2008 Belgian Lambert projection. 
Once the BEREF was completed, a new ver-
sion of Belgian Lambert went into use with 
the coordinates of the central meridian and 
standard parallels (49-50 N and 51-10 N) 
defined on the global ellipsoid GRS80 and 
lined with ETRS89. To avoid confusion with 
the 1972 version, the coordinates were given 
a false origin in the 2008 version by adding 
approximately 500 km. Though projections 
and datums must change due to changes in 
the earth’s crust, discretionary decisions can 
be made, to help avoid confusion among the 
different systems in use.

Source: National Committee of Geography 
of Belgium. (2012). A concise 
geography of Belgium. Ghent, Belgium: 
Academia Press.
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at the standard point or standard lines you can assess the scale distortions 
using this formula:

Scale factor =
Local scale

Principle scale

where local scale is the scale calculated at a particular place and principle scale 
is the scale computed at the standard point or a standard line (see Table 5.3).

For example, the scale factor of a transverse Mercator projection with a 
principle scale of 1:400,000,000 calculated between 20° and 30° S will indi-
cate how much distortion the projection introduces. First, calculate the local 
scale by measuring along the meridian between 20° and 30° S. This gives 
you the map distance, which is 3.1 cm (1.2 in.) (shown in Figure 5.9 with the 
letter A). You compute the ground distance between the same portion of the 
meridian by consulting a table showing the lengths of a degree of latitude 
along a meridian. At 20° a degree of latitude is 110,704.278 m long. Multiply-
ing the 10° of latitude to 30° S would measure approximately 1,107,042.78 m 
or 1,107.04 km. Second, by substituting the 3.1 cm and 1,107.04 km into the 
map scale equation, you can calculate the local scale:

Map scale = earth distance/map distance
Map scale = 1,107.04 km/3.1 cm

The units in the equation must be equal, so you first need to convert kilome-
ters to centimeters by multiplying by 100,000.

1,107.04 km × 100,000 = 110,704,000 cm

Calculate the local map scale:

Map scale = 110,704,000 cm/3.1 cm
Map scale = 1:35,710,967.74

TABLE 5.3. Table of Meridian Distances for Various Latitudes

Latitude (°) Miles Kilometers

  0 68.71 110.57
10 68.73 110.61
20 68.79 110.70
30 68.88 110.85
40 68.99 111.04
50 69.12 111.23
60 69.23 111.41
70 69.32 111.56
80 69.38 111.66
90 69.40 111.69
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This map scale is considerably larger than the map scale along the standard 
line of 1:30,000,000. You can now compute the scale factor using the scale 
factor equation:

Scale factor =
35,710,967.74

30,000,000

Scale factor = 1.19

This scale factor suggests that the distances in the transverse Mercator pro-
jection increase away from the central meridian. A visual check of the pro-
jected map supports this conclusion.

Tissot Indicatrix

A visual analytic to display and examine projection distortions was devel-
oped by the mathematician Nicholas Tissot in the 19th century. The concept 
is simply that any small circle on a spheroid or ellipsoid, when projected to 
the same point on the flat map, will show the distortion created by the map 
projection for that area through the projected shape and size of the circle. 
When the circles are plotted at various points on a map, they allow for a 
visual comparison of distortion. You should note that the changed shapes 
and sizes of the indicatrix refer to individual points and cannot be used in 
evaluating distortion of continents or water bodies.

The indicatrix has two characteristics that can be used to evaluate dis-
tortion. The first is the two radii, semimajor (a) and semiminor (b), which are 
perpendicular to each other (see Figure 5.10). The semimajor axis is aligned 
in the direction of the maximum SF and the semiminor axis is aligned in 
the direction of the minimum SF. The second is the angle between two lines 
l and m that intersect the center of the indicatrix circle, but are turned 45° 
in respect to the center, if there is no angular distortion. The distances of 
the semimajor and the semiminor axes, respectfully, indicate the scale factor 
distortion along each axis. The angle between two lines l and m indicates the 
amount of angular distortion. For example, a circle where l and m intersect 

Figure 5.10.  Tissot’s indicatrix circle indicating no 
areal and no angular distortion.
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at right angles indicates no distortion. If the shape of the circle is distorted 
into an ellipse, but the area is the same as the circle and the two lines l and 
m intersect at angles greater or less than 90°, there is no areal distortion, but 
there is angular distortion.

A map showing multiple Tissot indicatrix circles is a valuable aid to 
determine projection distortion (see Figure 5.11). The revealed patterns of 
distortion help in choosing the appropriate projection for a particular area.

Combining GI from Different Projections

The large number of projections available means that great care must be 
taken when working with GI from different sources. Projections for GIS pro-
vide a great deal of flexibility, but easily introduce problems when working 
with data created using different projections. You should note that projec-
tions used for GI differ from maps in an important way. When a map is made, 
one single projection is used with a single scale for the entire map. The same 
thing applies for GI with one important difference: the coordinate system of 
the GI usually is much larger than a piece of paper used for a map. The GI 
must be scaled another time when a map is made, which can introduce some 
distortion. Obviously, if the GI is stored in the coordinates of a piece of paper, 
it is much harder to use it with other data, so this makes sense.

Figure 5.11.  Two Tissot indicatrix circles shown on a Mercator projection with the 
standard line of the equator.
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Assuming that different data sets of GI for the same area use the same 
projection can lead to vast problems (see Figure 5.12). Usually the problems 
when combining GI from different projections are so obvious that they can’t 
be missed. Sometimes the distortions are slight and may seem inexplicable: 
a road from one data source is 2 m away from the property that runs along 
it from another data source. If care is not taken, it is possible to create great 
errors by combining data prepared from different projections. The same 
concern applies to coordinate systems, the topic for the next chapter, where 
we will look at these issues in more detail.

Summary

Projections have been the core of cartography and the basis for represent-
ing GI. For millennia people have developed projections to find ways to 
represent the three-dimensional world humans live on in two dimensions—a 
format much better suited for recording observations and measurements. 
While it is possible to make maps without a projection, unprojected GI or 
maps are inaccurate and distorted for all larger areas and many small areas. 
A projection can be applied to different areas and at different scales. The 
smaller the area, the more accurate a projection can be. How accurate the 
projection is depends on how the projection is constructed and what under-
lying model of the earth’s form it uses. Basic characteristics of a projection 
are its orientation, tangency, and form. Projections have several properties. 
The most important properties are the preservation of angles (conformality) 
and the preservation of areas (equivalent). Only one of these two proper-
ties can be preserved in any one projection. Some projections distort both 

Figure 5.12.  An example of an obvious error 
resulting from using data sources for the same 
area (Minnesota) but with different projections. 
Diagnosing the causes of such errors and resolv-
ing them can be very time-consuming if informa-
tion about the choices made regarding the respec-
tive projections is unavailable.
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properties and are called compromise projections. The resulting distortions 
can be ascertained and described using a Tissot indicatrix. Because of the 
number of differences, it is important to assess the characteristics and prop-
erties of projections when working with GI, especially when combining GI 
from different sources.

Review Questions

  1.	 Identify the type (equal angle, equal area, compromise) of the following 
projections:

Mercator Lambert Mollweide sinusoidal azimuthal Robinson

  2.	 What is the difference between a secant and a tangent projection?

  3.	 What is a transverse projection?

  4.	 Why is a transverse Mercator projection better for north–south oriented 
areas and states (e.g., Illinois) than a Lambert conformal conic projection?

  5.	 What are the three important characteristics of projections?

  6.	 Why is most GI projected to a two-dimensional, Cartesian coordinate 
system?

  7.	 Why should you never combine GI from different projections?

  8.	 How can positional distortion be measured?

  9.	 What is the difference between a geoid and a spheroid?

10.	 Why are Mercator and Peters projections technically satisfactory? Why do 
people consider the Mercator projection to be a bad projection?

Answers

  1.	 Identify the type (equal angle, equal area, compromise) of the following 
projections:

Mercator Lambert Mollweide sinusoidal azimuthal Robinson
(Equal shape) (Equal area) (Equal area) (Equal area) (Equal distance) (Compromise)

  2.	 What is the difference between a secant and a tangent projection?

A secant projection surface “touches” the earth’s surface in two places; 
a tangent projection “touches” only at one.

  3.	 What is a transverse projection?

A transverse projection is a cylindrical projection, which is normally 
oriented east–west, rotated 90 degrees to a north–south orientation.
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  4.	 Why is a transverse Mercator projection better for north–south oriented 
areas and states (e.g., Illinois) than a Lambert conformal conic projection?

The conic projection works best for areas with an east–west orientation; 
its line(s) of tangency run east–west. The transverse Mercator projec-
tion’s line of tangency runs north–south, providing a more accurate 
positional reference than the Lambert conformal conic projection of 
the same area.

  5.	 What are the three important characteristics of projections?

Equal shape: preservation of shapes; equal area: preservation of areas; 
equal distance; preservation of distances

  6.	 Why is most GI projected to a two-dimensional, Cartesian coordinate 
system?

Several reasons need to be considered. Much GI comes from maps with 
such coordinate systems. Most GI is used to make planar maps. Most 
GIS are designed to store two-dimensional coordinate locations.

  7.	 Why should you never combine GI from different projections?

GI from different projections for the same area will be in different 
coordinate systems that do not align properly.

  8.	 How can positional distortion be measured?

For small-scale maps, Tissot’s indicatrix provides a good graphical 
indicator. Large-scale maps, showing small areas, require the use of 
statistical measures.

  9.	 What is the difference between a geoid and a spheroid?

A geoid is a more accurate representation of the earth’s surface, 
accounting for local variations. A spheroid is a more round form that 
fails to account for local variations and the oblateness of the earth 
resulting from its spin.

10.	 Why are Mercator and Peters projections technically satisfactory? Why do 
people consider the Mercator projection to be a bad projection?

The Mercator projection is well suited for compass navigation at sea. 
The Peters projection is a compromise that offers a different way of 
representing the world. The overuse and ill-suited use of the Mercator 
projection to show regions of the world has led to the Mercator acquir-
ing a bad reputation.

Chapter Readings

Jones, C. (1997). Geographical information systems and computer cartography. Upper 
Saddle River, NJ: Prentice Hall.

For a fascinating, if wide-reaching, biography and study of a person who was instru-
mental in determining the elliptical shape of the earth, see
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Terrall, M. (2002). The man who flattened the earth: Maupertuis and the sciences in the 
Enlightenment. Chicago: University of Chicago Press.

For information about the basic mathematical principles of cartography, see
Cotter, C. H. (1966). The astronomical and mathematical foundations of geography. New 

York: Elsevier.
For a history of projections, see
Montgomery, S. (1996). Naming the heavens: A brief history of earthly projections. 

Science as Culture, 5(25), 546–587.
For a very thorough history of projections, see
Snyder, J. P. (1993). Flattening the earth: Two thousand years of map projections. Chicago: 

University of Chicago Press.

Web Resources

55 More specific information about projection parameters and accuracy is 
provided by government agencies, for example, the California Department of 
Fish and Game: www.dfg.ca.gov/biogeodata/gis/pdfs/DFG_Projection_and_
Datum_Guidelines.pdf.

55 A good resource for fundamentals of geodesy is provided by the U.S. National 
Geospatial-Intelligence Agency, Geodesy for the Layman, available online at 
www.ngs.noaa.gov/PUBS_LIB/Geodesy4Layman/toc.htm.

55 For information about homemade map projections using plastic bottles and 
the like, see http://octopus.gma.org/surfing/imaging/mapproj.html.

55 This first of four articles offers a very well written and detailed discussion of 
the new U.S. datums: Minkel, D. H., & Dennis, M. L. (2012). Frames for the 
future: New datum definitions for modernization of the U.S. NSRS (Part 1 of 4). 
The American Surveyor, 9(1). Available online at www.amerisurv.com/content/
view/9609.

E x e r c i s e s

1.	 Projections for Different Needs

If you collect maps from magazines and newspapers for a few weeks, you will 
have a pretty sizable collection of different kinds of maps and different kinds of 
projections.

Come up with a list of different uses of maps and the projections used for 
each.

Think about how projections can preserve the shape of things on the earth, 
their size, or the distance from a point or along a line, or must compromise 
between these three projection properties.
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Knowing what you do now about the different qualities of projections, what 
do you think about newspaper maps that do not indicate the projection? Are they 
common? What kind of errors do you think can arise?

If possible, you also can explore the collection of maps and atlases in a 
nearby library.

2.	 Questions for Map Projections

1.	 Is the map whole or broken up?

2.	 What shape does the projection make the map?

3.	 How are features (continents and islands) arranged?

4.	 Are gridlines curved or straight?

5.	 Do parallels and meridians cross at right angles?

Ex tended Exercise

3.	 Sinusoidal Projection

Overview

In this exercise you will calculate values for a sinusoidal projection that you pro-
duce.

Concepts

The location of a point (x, y) in a sinusoidal equal area projection is calculated 
for this exercise in two steps. First, the longitude value is transformed to east–
west values (x) by multiplying the longitude value times the radius and times the 
cosine of the latitude. Multiplying the longitude values by a cosine of latitude cre-
ates the gradually increasing distortion of areas farther away from the equator. The 
north–south values (y) of the projection are calculated through a linear relationship 
between the radius and the latitude. Second, you will scale the calculated x and y 
values to fit a map on a piece of paper by determining a scale ratio that transforms 
the radius of the sphere (6,371 km).

Exercise Steps and Questions

Preparation

In this exercise you will be calculating a projection of a graticule. You will have to do 
the calculations and show that you have done them, but you can work with other 
people to check your answers and determine the process. Before the calculating 
part of this exercise, let’s look at the fundamental problems of projecting a spherical 
object on a plane.
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Part 1. Angle Measures: Degrees and Radians

In Part 2 of this exercise, you will need to make the calculations in radians. Radians 
are one of three ways to measure angles. They are mainly used for engineering 
and science. We won’t spend much time getting into the mathematics of angular 
measures. For this exercise, you only need to understand the relationship between 
degree and radian measures of angles.

If you know an angle measure in degrees, you can easily convert it to radians, 
another measure for angles used in engineering and scientific calculations:

radians = (degrees · p)/180

For example, 180 degrees equals 3.14 radians; 90 degrees equals 1.57 radians; 
45 degrees equals 0.785 radians. As the examples show, radians express angular 
measures in relation to the radius.

Part 2. Construct a Sinusoidal Projection of a Graticule

Step 1: Calculate the projection.

Use the table below for recording the results of your calculations. The rows indicat-
ing latitude are on the left and the columns indicating longitude are on the top. You 
will be calculating the sinusoidal projection for latitudes 0°, 30°, 60°, and 90°, and for 
longitudes 0°, 30°, 60°, 90°, 120°, 150°, and 180°. Your results will be in kilometers, or, 
for an idealized projection surface, about 10,000 km in length and height.

The equations you will use are:

x = radius · longitude · cosine (latitude)
y = radius · latitude

where radius = 6,371 km. Remember: Convert all angle measures from degrees 
to radians by multiplying by pi and dividing by 180 degrees. For example, 30° cor-
responds to p/6 using the conversion equation from above.

Table of Projected Values (Step 1)

Latitude Longitude

0° 30° 60° 90° 120° 150° 180°

0° 0,0

30°

60°

90°

Step 2: Scale the x, y Values and Then Graph Them.

The x, y values calculated in Step 1 are in kilometers; therefore they are certainly 
too large to fit on a piece of paper. As with creating any other map, the values need 
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to be converted to map units by determining a ratio that fits the x, y values on the 
sheet of paper you use (8.5 × 11 inches, or approximately 22 × 33 cm). Scale can be 
determined by putting the ground values and map values in the same units, here 
cm, and calculating the ratio between the shortest ground value distance and the 
longest map value distance.

Determine this value and fill it in here:

                  Scale factor:                     

With the scale factor, convert your original projected values to map units. Use 
the table below for those calculations.

Table of Projected Values (Step 2)

Latitude Longitude

0° 30° 60° 90° 120° 150° 180°

0° 0,0

30°

60°

90°

Using a ruler, graph each coordinate pair on the x and y axis on a separate 
piece of paper. The graph should look like the northeastern quadrant of a sinusoi-
dal projection. When this is completed, label the axis with tick marks that indicate 
the corresponding degree value from 0° to 90° latitude and 0° to 180° longitude. 
This is a map projected to a sinusoidal projection.

Questions

1.	 The sinusoidal projection is an example of an equal-area projection. What are 
the major differences between this type of projection and conformal projec-
tions?

2.	 Why do the x values lack two-dimensional scaling at 0° longitude in the sinusoi-
dal projection?

3.	 What are the major differences between the Mercator and sinusoidal projec-
tions? How big is a pole in each projection?

4.	 Minneapolis/St. Paul is located at approximately –93° longitude, 45° latitude. 
What are the x, y coordinates in the sinusoidal projection?
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