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Reliability

This chapter introduces reliability—a topic that is broad and has important implications
for any research endeavor. In this chapter, the classical true score model is introduced
providing the foundation for the conceptual and mathematical underpinnings of reliability.
After the foundations of reliability are presented, several approaches to the estimation of
reliability are provided. Throughout the chapter, theory is linked to practical application.

7.1 Introduction

Broadly speaking, the term reliability refers to the degree to which scores on tests or other
instruments are free of errors of measurement. The degree to which scores are free from
errors of measurement dictates their level of consistency or reliability. Reliability of mea-
surement is a fundamental issue in any research endeavor because some form of mea-
surement is used to acquire data. The process of data acquisition involves the issues of
measurement precision (or imprecision) and the manner by which it is reported in rela-
tion to test scores. As you will see, reliability estimation is directly related to measurement
precision or imprecision (i.e., error of measurement). Estimating the reliability of scores
according to the classical true score model involves certain assumptions about a person’s
observed, true, and error scores. This chapter introduces the topic of reliability in light of
the assumptions of the true score model, how it is conceptualized, requisite assumptions
about true and error scores, and how various coefficients of reliability are derived.

Two issues central to reliability are (1) the consistency or degree of similarity of 
at least two scores on a set of test items and (2) the stability of at least two scores on a 
set of test items over time. Different methods of estimating reliability are based on spe-
cific assumptions about true and error scores and, therefore, address different sources 
of error. The assumptions explicitly made regarding true and error scores are integral to 
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correctly reporting and interpreting score reliability. Although the term reliability is used 
in a general sense in many instances, reliability is clearly a property of scores rather than 
measurement instruments or tests. It is the consistency or stability of scores that provides 
evidence of reliability when using a test or instrument in a particular context or setting. 

This chapter is organized as follows. First, a conceptual overview of reliability is
presented followed by an introduction to the classical true score model—a model that
serves as the foundation for classical test theory. Next, several methods commonly used
to estimate reliability are presented using the classical test theory approach. Specifically, we
present three approaches to estimating reliability: (1) the test–retest method for estimating
the stability of scores over time, (2) the internal consistency method based on the model of
randomly parallel tests, and (3) the splithalf method—also related to the model of paral-
lel tests. A subset of the dataset introduced in Chapter 2 that includes three components
of the theory of generalized intelligence—fluid (Gf), crystallized (Gc), and short-term
memory (Gsm)—is used throughout the chapter in most examples. As a reminder, the
dataset used throughout this chapter includes a randomly generated set of item responses
based on a sample size N = 1,000 persons. For convenience, the data file is available in
SPSS (GfGc.sav), SAS (GfGc.sd7), or delimited file (GfGc.dat) formats and is download-
able from the companion website (www.guilford.com/price2-materials).

7.2 Conceptual Overview

As noted earlier, measurement precision is a critical component of reliability. For exam-
ple, a useful way to envision the concept of reliability is to determine how free a set of 
scores is from measurement error. How one evaluates (or estimates) the degree of mea-
surement error in a set of scores is a primary focus of this chapter and is foundational 
to understanding the various approaches to the estimation of reliability. Reliability is 
perhaps most concretely illustrated in fields such as chemistry, physics, or engineering. 
For example, measurements acquired in traditional laboratory settings are often acquired 
within the context of well-defined conditions, with precisely calibrated instrumentation, 
where the object of the measurement physically exists (i.e., directly observable and mea-
sureable physical properties). Consider two examples from chemistry: (1) measurement 
such as the volume of a gas in a rigid container at an exact temperature and (2) the pre-
cise amount of heat required to produce a chemical reaction. In the first example, say that 
a researcher measures the volume of gas in a rigid container on 10 different occasions. 
In summarizing the 10 measurements, one would expect a high degree of consistency, 
although there will be some random error variability in the numerical values acquired 
from the measurement due to fluctuations in instrumentation (e.g., calibration issues or 
noise introduced through the instruments used for the data collection). When research is 
conducted with human subjects, random error may occur due to distractions, guessing, 
content sampling, or intermittent changes in a person’s mental state (see Table 7.1). 

Another type of error is called systematic or constant error of measurement (Gulliksen, 
1950b; 1987, p. 6). For example, systematic error occurs when all test scores are 
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excessively high or low. In the physical sciences, consider the process of measuring the 
precise amount of heat required to produce a chemical reaction. Such a reaction may be 
affected systematically by an improperly calibrated thermometer being used to measure 
the temperature—resulting in a systematic shift in temperature by the amount or degree 
of calibration error. In the case of research conducted with human subjects, systematic 
error may occur owing to characteristics of the person, the test, or both. For example, 
in some situations persons’ test scores may vary in a systematic way that yields a consis-
tently lower or higher score over repeated test administrations. With regard to the crys-
tallized intelligence dataset used in the examples throughout this book, suppose that all 
of the subtests on the total test were developed for a native English-speaking population. 

Table 7.1. General and Specific Origins of Test Score Variance Attributable  
to Persons

General: Enduring traits or attributes

1. Skill in an area tested such as reading, mathematics, science
2. Test-taking ability such as careful attention to and comprehension of instructions
3. Ability to respond to topics or tasks presented in the items on the test
4. �Self-confidence manifested as positive attitude toward testing as a way to measure ability, achieve-

ment, or performance

Specific: Enduring traits or attributes

1. Requisite knowledge and skill specific to the area or content being measured or tested
2. �Emotional reactivity to a certain type of test item or question (e.g., the content of the item includes

a topic that elicits an emotional reaction)
3. Attitude toward the content or information included on the test
4. Self-confidence manifested as positive attitude toward testing as a way to measure ability, achieve-

ment, or perfomance

General: Limited or fluctuating

1. Test-taking anxiety
2. Test preparation (e.g., amount and quality of practice specific to the content of items on the test)
3. Impact of test-taking environment (e.g., comfort, temperature, noise)
4. Current attitude toward the test and testing enterprise
5. Current state of physical health and level of mental/physical fatigue
6. Motivation to participate in the testing occasion
7. Relationship with person(s) administering the test

Specific: Limited or fluctuating

1. Momentary changes in memory specific to factual information
2. Test preparation (e.g., amount and quality of practice specific to the content of items on the test)
3. Guessing correct answers to items on the test
4. Momentary shift in emotion triggered by information included on test item
5. Momentary shifts in attention or judgment

Note. Based on Cronbach (1970).
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Further suppose that a non-native English-speaking person responds to all questions on 
the subtests. The person’s scores over repeated testing occasions will likely be consistently 
lower (due to the language component) than their true or actual level of intellectual abil-
ity because English is not the respondents’ first or primary language. However, systematic 
error is not part of the theoretical assumptions of the true score model—only random error is. 
Therefore, systematic errors are not regarded as affecting the reliability of scores; rather, 
they are a source of construct-related variance (an issue related to validity).

The example with non-native English speaking persons introduces one aspect of an
important topic in psychometrics and/or test theory known as validity (i.e., the test not
being used with the population for which it was developed). Evidence of test validity is related
to reliability such that reliability is a necessary but not sufficient condition to establish the valid-
ity of scores on a test. The validity example is important because errors of measurement place
limitations on the validity of a test. Furthermore, even if no measurement error existed,
complete absence of measurement error in no way guarantees the validity of test scores.
Validity, a comprehensive topic, is covered in Chapters 3 and 4 of this text. Table 7.1 pro-
vides examples of sources of error variability that may affect the reliability of scores (either
randomly or systematically) when conducting research in social and/or behavioral science.

7.3 The True Score Model

In 1904, Charles Spearman proposed a model-based framework of test theory known 
as the true score model. For approximately a century, Spearman’s true score model has 
largely dominated approaches to the estimation of reliability. This model rests on the 
assumption that test scores represent fallible (i.e., less than perfectly objective or accu-
rate) measurements of human traits or attributes. Because perfect measurement can 
never occur, observed scores always contain some error. Based on the idea that measure-
ments are fallible, Spearman (1904, 1907) posited that the observed correlation between 
such fallible scores is lower than would be observed if one were able to use true objective 
values. Over the past century, the true score model has been revised and/or expanded 
with formal, comprehensive treatments published by Harold Gulliksen (1950b, 1987) in 
The Theory of Mental Tests and Fredrick Lord and Melvin Novick (1968) in their seminal 
text Statistical Theories of Mental Test Scores. The true score model for a person is pro-
vided in Equation 7.1 (Lord & Novick, 1968, p. 56).

Equation 7.1. True score model

Xi = Ti + Ei

• Xi = observed fallible score for person i.

• Ti = true score for person i.

• Ei = error score for person i.
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Although Equation 7.1 makes intuitive sense and has proven remarkably useful his-
torically, six assumptions are necessary in order for the equation to become practical 
for use. Before introducing the assumptions of the true score model, some connections 
between probability theory, true scores, and random variables are reviewed in the next 
section (see the Appendix for comprehensive information on probability theory and ran-
dom variables).

7.4 �Probability Theory, True Score Model,  
and Random Variables

Random variables are associated with a set of probabilities (see the Appendix). In the true 
score model, test scores are random variables and, therefore, can take on a hypothetical 
set of outcomes. The set of outcomes is expressed as a probability (i.e., expressed as a fre-
quency) distribution as illustrated in Table 7.2. For example, when a person takes a test, 
the score he or she receives is considered a random variable (expressed in uppercase let-
ter X in Equation 7.1). The one time or single occasion a person takes the test, he or she 
receives a score, and this score is one sample from a hypothetical distribution of possible out-
comes. Table 7.2 illustrates probability distributions based on a hypothetical set of scores 
for three people. In the distribution of scores in Table 7.2, we assume that the same per-
son has taken the same test repeatedly and that each testing occasion is an independent 

Table 7.2. Probability of Obtaining a Particular Score  
on a 25-Item Test of Crystallized Intelligence on a Single 
Testing Occasion

Raw score (X)

Person

A
p(X)

B
p(X)

C
p(X)

4 0.01 0.04 0.00
5 0.01 0.05 0.00
6 0.02 0.10 0.00
7 0.05 0.28 0.02
8 0.06 0.45 0.03

11 0.08 0.08 0.12
13 0.40 0.00 0.13
14 0.23 0.00 0.18
15 0.10 0.00 0.40
17 0.02 0.00 0.07
18 0.02 0.00 0.04
20 0.00 0.00 0.01
S(X)p = 12.54 7.45 14.02

Note. Each person has a unique score distribution independently determined for a 
single person. The frequency distribution of scores in the table is not based on any 
actual dataset used throughout this text; rather, it is only provided as an example.
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event. The result is a distribution of scores for each person with an associated probability. 
The probabilities expressed in Table 7.2 are synonymous with the relative frequency for 
a score based on the repeated testing occasions. The implication of Table 7.2 for the true 
score model or classical test theory is that the mean (or expectation) of the hypothetical 
observed score distribution for a person based on an infinitely repeated number of independent 
trials represents his or her true score within the classical true score model. 

To clarify the role of the person-specific probability distribution, consider the follow-
ing example in Table 7.2. Tabulation of the probability of a person’s raw score (expressed 
as a random variable) multiplied by the probability of obtaining a certain score (due to 
probability theory) demonstrates that person C appears to possess the highest level of 
crystallized intelligence for the 25-item test. Furthermore, by Equation 7.6, person C’s 
true score is 14.02. Notice that for person C the probability (i.e., expressed as the rela-
tive frequency) of scoring a 15 is .40—higher than the other two persons. Person A has 
a probability of .40 scoring a 13. Person B has a probability of .45 scoring an 8. Clearly, 
person C’s probability distribution is weighted more heavily toward the high end of the 
score scale than person A or B.

Although a person’s true score is an essential component of the true score model,
true score is only a hypothetical entity owing to the implausibility of conducting an infi-
nite number of independent testing occasions. True score is expressed as the expectation
of a person’s observed score over repeated independent testing occasions. Therefore, the
score for each person taking the test represents a different random variable regarding his or
her person-specific probability distribution (e.g., Table 7.2). The result is that such per-
sons have their own probability distribution—one that is specific to their hypothetical
distribution of observed scores (i.e., each person has an associated score frequency or
probability given their score on a test). In actual testing situations, the interest is usually
in studying individual differences among people (i.e., measurements over people rather
than on a single person). The true score model can be extended to accommodate the
study of individual differences by administering a test to a random sample of persons
from a population. Ideally, this process could be repeated an infinite number of times
(under standardized testing conditions), resulting in an observed score random variable
taking on specific values of score X. In the context described here, the error variance
over persons can be shown to be equal to the average, over persons (group-level), of
the error variance within persons (hypothetical repeated testing occasions for a single
person; Lord & Novick, 1968, p. 35). Formally, this is illustrated in Equation 7.5 in the
next section.

In the Appendix, equations for the expectation (i.e., the mean) of continuous and 
discrete random variables are introduced along with examples. In the true score model, 
total test scores for persons are called composite scores. Formally, such composite scores 
are defined as the sum of responses (response to an item as a discrete number) to individ-
ual items. At this point, readers are encouraged to review the relevant parts of Chapter 2 
and the Appendix before proceeding through this chapter; this will reinforce key founda-
tional information essential to understanding the true score model and reliability estima-
tion. Next, we turn to a presentation of the assumptions of the true score model. 
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7.5 Properties and Assumptions of the True Score Model

In the true score model, the human traits or attributes being measured are assumed to 
remain constant regardless of the number of times they are measured. Imagine for a 
moment that a single person is tested an infinite number of times repeatedly. For exam-
ple, say Equation 7.1 is repeated infinitely for one person and the person’s true state of 
knowledge about the construct remains unchanged (i.e., is constant). This scenario is 
illustrated in Figure 7.1.

Table 7.3 illustrates observed, true, and error scores for 10 individuals. Given this 
scenario, the person’s observed score would fluctuate owing to random measurement 
error. The hypothetical trait or attribute that remains constant and that observed score 
fluctuates about is represented as a person’s true score or T. Because of random error 
during the measurement process, a person’s observed score X fluctuates over repeated 
trials or measurement occasions. The result of random error is that differences between 
a person’s observed score and true score will fluctuate in a way that some are positive 
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Figure 7.1.  True score for a person. Adapted from Magnusson (1967, p. 63). Copyright 1967. 
Reprinted by permission of Pearson Education, Inc. New York, New York.
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and some are negative. Over an infinite number of testing occasions, the positive and nega-
tive errors cancel in a symmetric fashion, yielding an observed score equaling true score for a 
person (see Equations 7.5 and 7.6).

Notice that in Table 7.4, all of the components are in place to evaluate the reliability 
of scores based on errors of measurement.

 In the situation where score changes or shifts occur systematically, the difference 
between observed and true scores will be either systematically higher or lower by the fac-
tor of some constant value. For example, all test takers may score consistently lower on a 
test because the examinees are non-English speakers, yet the test items were written and/
or developed for native English-speaking persons. Technically, such systematic influences 
on test scores are not classified as error in the true score model (only random error is assumed 
by the model). The error of measurement for a person in the true score model is illustrated 
in Equation 7.2. Alternatively, in Figure 7.2, the relationship between observed and true 

Table 7.4. Correlations among Observed, True, 
and Error Scores for 10 Persons

1 2 3

1. Observed 1 0.91 0.42
2. True 1 0.00
3. Error 1

Note. rTE = 0.0; rOE = .42; rOT = .91; rXX
 = .82 (which is the reliability coef-

ficient expressed as the square of rOT = .91); r2
OE = .42; rOT = .91. The cor-

relation between true and error scores is actually .003 in the above example.

Table 7.3. Crystallized Intelligence Test Observed, True, and Error Scores  
for 10 Persons

Person (i) Observed score (X) True score (T) Error score (E)

A 12.00 = 13.00 + –1.00
B 14.50 = 12.00 + 2.50
C 9.50 = 11.00 + –1.50
D 8.50 = 10.00 + –1.50
E 11.50 = 9.00 + 2.50
F 7.00 = 8.00 + –1.00
G 17.00 = 17.25 + –0.25
H 17.00 = 16.75 + 0.25
I 10.00 = 9.00 + 1.00
J 8.00 = 9.00 + –1.00
Mean 11.50   11.50   0.00
Standard deviation 3.43   3.11   1.45
Variance 11.75   9.66   2.11
Sum of cross products 96.50        
Covariance 9.65        

Note. Correlation of observed scores with true scores = .91. Correlation of observed scores with error scores = .42. 
Correlation of true scores with error scores = 0. True score values are arbitrarily assigned for purposes of illustration. 
Variance is population formula and is calculated using N. Partial credit is possible on test items. Covariance is the 
average of the cross products of observed and true deviation scores. 
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scores is expressed as the regression of true score on observed score (e.g., the correlation
between true and observed score is .91 and .912 = .82 or the reliability coefficient).

Next, in Equation 7.3, the mean of the distribution of error is expressed as the 
expected difference between the observed score and true score for a person over infinitely 
repeated testing occasions (e.g., as in Table 7.3).

Because X and T are equal in the true score model (inasmuch as the mean observed 
score distribution over infinite occasions equals a person’s true score distribution), the 
mean error over repeated testing occasions is also zero (Table 7.3; Figure 7.1; Equation 7.4; 

Equation 7.2. Error of measurement in the true score model for 
person i

Ei = Xi – Ti

• Ei = error score for person i.

• Xi = observed score for person i.

• Ti = true score for person i.
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Figure 7.2.  Regression line and scatterplot of true and observed scores for data in Table 7.3.
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Lord & Novick, 1968, p. 36; Crocker & Algina, 1986, p. 111). Also, since the error com-
ponent is random, then from classical probability theory (e.g., Rudas, 2008), the mean 
error over repeated trials equals zero (Figure 7.1). Accordingly, the first assumption in 
the true score model is that the mean error of measurement over repeated trials or test-
ing occasions equals zero (Equation 7.4). The preceding statement is true for (a) an infinite 
number of persons taking the same test—regardless of their true score and (b) for a single 
person’s error scores on an infinite number of parallel repeated testing occasions.

Assumption 1: The expectation (population mean) error for person i over an infinite 
number of trials or testing occasions on the same test is zero.

Extension to the Group Level

The expectation (mean) error for a population of persons (i.e., represented at the group 
level) over an infinite number of trials or testing occasions is zero. Equation 7.5 includes 
the double expectation operator to illustrate that the error variance over persons can be 
shown to be equal to the average over persons in a group of the error variance within per-
sons (Lord & Novick, 1968, pp. 34–37). Here, the group notation is denoted by subscript 
j as presented in Crocker and Algina (1986, p. 111).

Equation 7.4. The expectation of random variable E for person i

e = (Ei) = 0

• �e	 = expectation operator.

• (Ei) = expected value of random variable Ei over an indefi-
nite number of repeated trials.

Equation 7.3. Mean error score for person i as expectation of the 
difference between observed score and true score

IE I I IE X T( ) ( )m = e = e -

• Ti	 = true score for person i.

• m IE 	 = mean error score for person i.

• e	 = expectation operator.

• (Ei)	= observed error score for person i.

• Xi	 = mean of observed score X for subject i.
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A main caveat regarding Equation 7.5 is that for a random sample of persons from a 
population, the average error may not actually be zero. The discrepancy between true score 
theory and applied testing settings may be due to sampling error or other sources of error. 
Also, in the true score model, one is hypothetically drawing a random sample of error 
scores from each person in the sample of examinees. The expected value or population 
mean of these errors may or may not be realized as zero. 

Assumption 2: True score for person i is equal to the expectation (mean) of their 
observed scores over infinite repeated trials or testing occasions (Equation 7.6;
Table 7.2).

Equation 7.5. Mean error score for a population of persons

AND

m = e  e

m = e

E JJ

E J

X

(0)

• mE	 = mean error for a population or group of persons.

• e eJ  = double expectation operator reflecting that the error 
variance over persons is equal to the average error 
variance within persons.

• �ej	 = expectation for population or group j.

• eXj = expectation taken over all persons in group j.

Equation 7.6. True score for person i as expectation of mean 
observed score

= e = m II I XT X( )

• Ti	 = true score for person i.

• e	 = expectation operator.

• (Xi) = observed score for person i.

• m IX 	 = �mean of observed score X for subject i over indepen-
dent trials.
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The fact that a person’s true score remains constant, yet unknown, over repeated 
testing occasions makes using Equation 7.1 for the estimation of reliability with empiri-
cal data intractable because without knowing a person’s true score, deriving errors of 
measurement is impossible. To overcome the inability of knowing a person’s true score, 
items comprising a test are viewed as different parallel parts of a test, enabling estimation of 
the reliability coefficient. Given that items serve as parallel components on a test, reli-
ability estimation proceeds in one of two ways. First, the estimation of reliability can 
proceed by evaluating the internal consistency of scores by using a sample of persons 
tested once, with test items serving as component pieces (each item being a “micro test”) 
within the overall composite or total test score. Second, the estimation of reliability can 
proceed by deriving the stability of scores as the correlation coefficient for a sample of 
persons tested twice with the same instrument or on a parallel form of a test. Later in this 
chapter, several methods for estimating the reliability of scores are presented based on the 
true score model—all of which are based on the assumption of parallel tests. 

Extension to the Group Level

True score for a group of persons is equal to the expectation (mean) of their observed 
scores over infinite repeated trials or testing occasions (Equation 7.7; Lord & Novick, 
1968, p. 37; Gulliksen, 1950b, p. 29; Crocker & Algina, 1986, p. 111).

At this point, the properties of true and error scores within the true score model can 
be summarized as follows: (1) the mean of the error scores in a population or group of 
persons equals zero and (2) the expected population or group mean of observed scores 
equals the mean of true scores. We now turn to Assumption 3.

Assumption 3: In the true score model, the correlation between true and error 
scores on a test in a population of persons equals zero (Equation 7.8; Table 7.4; 
Figure 7.3). 

Equation 7.7. True score as expectation of mean observed score 
for group j

= e = m JJ J XT X( )

• Tj	 = true score for a group j.

• e	 = expectation operator.

• (Xj)	 = observed score for a group j.

• m JX 	 = �mean of observed score X for group j over indepen-
dent trials.
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A consequence of the absence of correlation between true and error scores (Assump-
tion 3, Equation 7.8) is that deriving the observed score variance is accomplished by 
summing true score variance and error variance (as linear components in Equation 7.9). 
This assumption implies that persons with low or high true scores do not exhibit system-
atically high or low errors of measurement because errors are randomly distributed (as in 
Figure 7.3). To illustrate the relationships between true and error scores, we return to the 
data in Table 7.3. In Table 7.4, we see that the correlation between true and error scores is 
zero (readers should calculate this for themselves by entering the data into SPSS or Excel 

Equation 7.8. Correlation between true and error scores in the true 
score model

rTE = 0

• rTE = �correlation between true and error scores in a
population.
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Figure 7.3.  Correlation of true score with error score from data in Table 7.3.
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216    PSYCHOMETRIC METHODS

and conducting a correlation analysis). Next, because true score and error scores are 
uncorrelated, observed score variance is simply the sum of true and error score variance. 
To verify this statement, return to Table 7.3 and add the variance of true scores (9.66) to 
the variance of error scores (2.11) and you will see that the result is 11.75—the observed 
score variance. Formally, the additive, linear nature of observed score variance in the true 
score model is illustrated in Equation 7.9.

Assumption 4: When an independent random sample of persons from a popula-
tion takes two separate tests that are parallel in structure and content, the correlation 
between the error scores on the two tests is zero (Equation 7.10; Lord & Novick, 
1968, pp. 47–49; Crocker & Algina, 1986, p. 111).

Intuitively, Assumption 4 should be clear to readers at this point based on the pre-
sentation thus far regarding the nature of random variables as having no relationship (in 
this case zero correlation between errors of measurement on two parallel tests).

Assumption 5: Error scores on one test are uncorrelated with true scores on another 
test (Equation 7.11). For example, the error component on one intelligence test is not 
correlated with true score on a second, different test of intelligence.

Equation 7.9. Observed score variance as the sum of true score 
and error score

s = s + s2
X T E
2 2

• sX
2 = observed score variance.

• sT
2 = true score variance.

• sE
2 = error score variance.

Equation 7.10. Correlation between two sets of random error 
scores from two tests in the true score model 

r =E E1 2 0

• rE E1 2 = population correlation between random errors of 
measurement for test 1 and parallel test 2.
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Assumption 6: Two tests are exactly parallel if, for every population, their true 
scores and error scores are equal (Lord & Novick, 1968; Equation 7.12). Further, all 
items on a test are assumed to measure a single construct. This assumption of measur-
ing a single construct is called unidimensionality and is covered in greater detail in 
Chapters 8 and 9 on factor analysis and item response theory. If two tests meet the 
assumptions of parallelism, they should be correlated with other external or criterion-
related test scores that are parallel based on the content of the test. The parallel tests 
assumption is difficult to meet in practical testing situations because in order for the 
assumption to be tenable, the testing conditions that contribute to error variability pre-
sented in Table 7.1 (e.g., fatigue, environment, etc.) must vary in the same manner in 
each of the testing scenarios. Also, part of Assumption 6 is that every population of 
persons will exhibit equal observed score means (i.e., mean expressed the degree of 
measurement precision expressed as how close scores are to one another) and 
variances (i.e., as a measure of error) on parallel tests. 

 Equation 7.11. Correlation between the error on test 1 and true 
score on test 2 are uncorrelated

r =E T1 2 0

• r 1 2E T  = �population correlation between the error on test 1
and true score on test 2 are uncorrelated. 

Equation 7.12. Definition of parallel tests 

= +

= +

s = sE E

X T E

X T E

1 2

1 1

2 2

2 2

• X1	 = observed score on test 1.

• X
2
	 = observed score on test 2.

• T	 = true score (assumed as equal on both tests).

• sE1
2  = variance of test 1.

• sE2
2  = variance of test 2.
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218    PSYCHOMETRIC METHODS

As previously stated, the model of parallel tests is important because it allows the 
true score model to become functional with empirical data. In fact, without the model 
of parallel tests, the true score model would be only theoretical because true scores are 
not actually measureable. Also, without knowing true scores, calculation of error scores 
would not be possible, making the model ineffective in empirical settings. To illustrate the 
importance of the model of parallel tests relative to its role in estimating the coefficient 
of reliability, consider Equations 7.13 and 7.14 (Crocker & Algina, 1986, pp. 115–116).

Equation 7.14. Deviation score formula as the correlation between 
parallel tests 1 and 2 with substitution of portions of Equation 7.12 
in numerator

+ + sr = =
s s s

T
X X

X X X

T E T E

N1 2

1 2

2
1 1 2 2

2

( )( )å

•	rX X1 2
 = �coefficient of reliability expressed as the correlation 

between parallel tests.

•	 t1	 = true score on test 1 in deviation score form.

•	 t2	 = true score on test 2 in deviation score form.  

•	x1	 = observed score on test 1 in deviation score form.  

•	x2	 = observed score on test 2 in deviation score form.  

•	sX1	 = observed score on test 1.

•	sX2	 = observed score on test 2.

•	N	 = sample size.

•	
s
s

T

X

2

2
	 = �the coefficient of reliability expressed as the ratio of 

true score variance to observed score variance.

Equation 7.13. Deviation score formula as the correlation on 
parallel tests 1 and 2

r =
s s

X  X
X X

X X

N1 2

1 2

1 2å

•	rX  X1 2
	 = correlation between scores on two parallel tests.

•	x1	 = observed deviation score on test 1.

•	x2	 = observed deviation score on test 2.

•	sx1	 = observed standard deviation on test 1.

•	sx2	 = observed standard deviation on test 2.

•	N	 = sample size.
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The first two lines in Equation 7.12 can be substituted into the numerator of 
Equation 7.13 yielding an expanded numerator in Equation 7.14. Notice in Equation 
7.14 that x, t, and e are now lowercase letters in the numerator. The lowercase let-
ters represent deviation scores (as opposed to raw test scores). A deviation score is 
defined as follows: ;- - -X X ET T    E; ;  where raw scores are subtracted from their respec-
tive means.

The final bullet point in Equation 7.14, the coefficient of reliability expressed as the 
ratio of true score variance to observed score variance, is the most common definition of 
reliability in the true score model.

7.6 �True Score Equivalence, Essential True Score Equivalence, 
and Congeneric Tests

Returning to the example data in Table 7.3, notice that the assumption of exactly parallel 
tests is not met because, although the true and observed score means are equivalent, their 
standard deviations (and therefore variances) are different. This variation on the model 
of parallel tests is called tau-equivalence, meaning that only the true (i.e., tau) scores are 
equal (Lord & Novick, 1968, pp. 47–50). Essential tau-equivalence (Lord & Novick, 
1968, pp. 47–50) is expressed by further relaxing the assumptions of tau-equivalence, 
thereby allowing true scores to differ by an additive constant (Lord & Novick, 1968; 
Miller, 1995). Including an additive constant in no way affects score reliability since 
the reliability coefficient is estimated using the covariance components of scores and is 
expressed in terms of the ratio of true to observed score variance (or as the amount of 
variance explained as depicted in Figure 7.1).

Finally, the assumption of congeneric tests (Lord & Novick, 1968, pp. 47–50; 
Raykov, 1997, 1998) is the least restrictive variation on the model of parallel tests because 
the only requirement is that true scores be perfectly correlated on tests that are designed 
to measure the same construct. The congeneric model also allows for either an additive 
and/or a multiplicative constant between each pair of item-level true scores so that the 
model is appropriate for estimating reliability in datasets with unequal means and vari-
ances. Table 7.5 summarizes variations on the assumptions of parallel tests within the 
classical true score model.

7.7 Relationship between Observed and True Scores

To illustrate the relationship among observed, true, and error scores, we return to using 
deviation scores based on a group of persons—a metric that is convenient for deriving 
the covariance (i.e., the unstandardized correlation presented in Chapter 2) among these 
score components. Recall that in Equation 7.1 the definition of observed score is the 
sum of the true score and error score. Alternatively, Equation 7.15 illustrates the same 
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220    PSYCHOMETRIC METHODS

elements in Equation 7.1 as deviation scores. In the previous section, a deviation score 
was defined as ;- - -X X ET T E; ; where raw scores are subtracted from their respective 
means. An advantage of working through calculations in deviation score units is that the 
derivation includes the standard deviations of observed, true, and error scores—elements 
required for deriving the covariance among the score components. The covariance is 
expressed as the product of observed and true deviation scores divided by the sample size 
(N). For the data in Table 7.3, the covariance is 9.65: )( )é ù= - -ë ûåOT O O T TX X X X /NCOV (
(as an exercise, you should use the data in Table 7.3 and apply it to the equation in 
this sentence to derive the covariance between true and observed scores). Notice that in 

Table 7.5.  Four Measurement Models of Reliability Theory

Model assumption
Parallel 

tests
Tau-equivalent 

tests
Essentially tau-
equivalent tests

Congeneric 
testsa

1. Equal expected observed scores X X — —
2. �Equal standard deviations (vari-

ances) of expected observed scores X — — —
3. �Equal covariance components for

expected observed scores for any
set of parallel tests or for any single 
parallel test and another test of a
different construct

X X X —

4. �Equal coefficients of covariance or
correlation X — — —

5. Equal coefficients of reliability X — — —

Note. Due to the axioms of classical test theory, expected observed scores equal true scores.
a In congeneric tests, there is no mathematically unique solution to the estimation of a reliability coefficient; thus only 
a lower bound should be reported.

Equation 7.15. Observed score, true score, and error score 
in deviation score units

x = t + e

• x = �observed score on a test derived as a raw score minus
the mean of the group scores.

• t  = true score on a test derived as a true score minus the 
mean of the group of true scores.  

• e  = error score derived as an error score minus the mean of 
the group error scores.
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Equation 7.14 the covariance is incorporated into the derivation of the reliability index by 
including the standard deviations of observed and true scores in the denominator. 

Next, recall that the true score model is based on a linear equation that yields a com-
posite score for a person. By extension and analogy, a composite score is also expressed as 
the sum of the responses to individual test items (e.g., each test item is a micro-level test). 
Working with the covariance components of total or composite scores (e.g., observed, 
true, and error components) provides a unified or connecting framework for illustrating 
how the true score model works regarding the estimation of reliability with individual and 
group-level scores in the true score model and classical test theory.

7.8 �The Reliability Index and Its Relationship  
to the Reliability Coefficient

The reliability index (Equation 5.16; Crocker & Algina, 1986, pp. 114–115; Kelley, 
1927; Lord & Novick, 1968) is defined as the correlation between observed scores 
and true scores. From the example data in Table 7.4 we see that this value is .91. 
The square of the reliability index (.91) is .82—the coefficient of reliability (see 
Table 7.4). Equation 7.16 illustrates the calculation of the reliability index working 
with deviation scores. Readers can insert the score data from Table 7.3 into Equation 
7.16, then work through the steps and compare the results reported in Table 7.4 pre-
sented earlier.

7.9 Summarizing the Ways to Conceptualize Reliability

The observed score variance variable sX
2 can be expressed as the sum of the random true 

score variance sT
2 plus the random observed score error variance sE

2. Computing the 
observed score variance as a linear sum using separate, independent components is pos-
sible because true score errors are uncorrelated with observed score errors. Next, using 
the component pieces of true score error and observed score error, the coefficient of reli-
ability can be conceptually expressed in Equation 7.17 as the ratio of true score variance 
to observed score variance. 

Returning to the data in Table 7.3, we can insert the variance components from the 
table in Equation 7.17 to calculate the reliability coefficient. For example, the true score 
variance (9.66) divided by the observed score variance (11.75) equals .82, the coefficient 
of reliability (Table 7.4). The type of reliability estimation just mentioned uses the vari-
ance to express the proportion of variability in observed scores explained by true scores. 
To illustrate, notice that the correlation between true scores and error scores in Table 7.4 
is .91. Next, if we square .91, a value of .82 results, or the reliability coefficient. In linear 
regression terms, the reliability (.82) is expressed as the proportion of variance in true 
scores explained by variance in observed scores (see Figure 7.2).
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Equation 7.16. The reliability index or the correlation between 
observed scores and true scores expressed as the ratio of standard 
deviation of true scores to the standard deviation of observed scores

+
r =

s s

+
=

s s

r = +
s s s s

å

å å

T
X T

X T

T
X T X T

T E T

N

T TE

N

N N

2

( )

å åT TE2

The last term above cancels because, by tautology, the cor-
relation between true and error scores is zero, and since

s =T

T

N

2

2
å

, then

sr =
s s

T
XT

X T

2

, simplifying to

sr =
s

T
XT

X

• rXT = reliability index.

• sT = standard deviation of true scores.

• sX = standard deviation of observed scores.

• t = true score in deviation score units.

• e = error score in deviation score units.

• å	 = summation operator.

• N = population size.

• sT
2	 = variance of true scores.

• åt2	 = sum of true scores squared.

Finally,

r2
XT = �the index of reliability squared is the coefficient of

reliability.
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Equation 7.17 illustrates that the squared correlation between true and observed 
scores is the coefficient of reliability. Yet another way to think of reliability is in terms 
of the lack of error variance. For example, we may think of the lack of error variability 
expressed as ( )- s s2 2

E O1 / . Referring to the data in Table 7.3, this value would be 1 − .18 = 
.82, or the coefficient of reliability. Finally, reliability may be described as the lack of cor-
relation between observed and error scores, or 2

OE1 - r , which, based on the data in Table 
7.3, is .82 or the coefficient of reliability. 

7.10 Reliability of a Composite

Earlier in this chapter it was stated that individual items on a test can be viewed as par-
allel components of a test. This idea is essential to understanding how reliability coeffi-
cients are estimated within the model of parallel tests in the true score model. Specifically, 
test items serve as individual, yet parallel, parts of a test providing a way to estimate the 
coefficient of reliability from a single test administration. Recall that a score on an indi-
vidual item is defined by a point value assigned based on a person’s response to an item 
(e.g., 0 for incorrect or 1 for correct). In this sense, an item is a “micro-level” testing unit, 
and an item score is analogous to a “micro-level test.” The variance of each item can be 
summed to yield a total variance for all items comprising a test. Equations 7.18a and 
7.18b illustrate how the variance and covariance of individual test items can be used to 
derive the total variance of a test. 

Based on Equation 7.18a, we see that total test variance for a composite is deter-
mined by the variance and covariance of a set of items. In Table 7.6, the total variance 
is the sum of the variances for each item (1.53), plus 2 times the sum of the individual 
covariance values (1.08), equaling a total test variance of 2.61. 

Equation 7.17. Coefficient of reliability expressed as a ratio 
of variances

s sr = =
s s + s

2 2
T T2

XT 2 2 2
X T E

• r2
XT	= coefficient of reliability.

• s2
T	 = true score variance.

• s2
X	 = observed score variance.

• s2
E	 = error score variance.
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Table 7.6. Variance–Covariance Matrix Based on 10 Crystallized Intelligence Test 
Items

Item 1 2 3 4 5 6 7 8 9 10

1 0.10 –0.01 –0.01 –0.02 –0.01 –0.02 –0.02 –0.01 –0.04 0.08
2 0.10 –0.01 –0.02 –0.01 –0.02 –0.02 –0.01 0.07 –0.03
3 0.10 0.09 –0.01 0.09 –0.02 –0.01 0.07 –0.03
4 0.18 –0.02 0.18 0.07 0.09 0.13 –0.07
5 0.10 –0.02 –0.02 –0.01 –0.04 0.08
6 0.18 0.07 0.09 0.13 –0.07
7 0.18 0.09 0.02 –0.07
8 0.10 0.07 –0.03
9 0.27 –0.13
10 0.23

Note. Variances are in bold on the diagonal and covariance elements are off-diagonal entries. S variances = 1.53; 
S covariances = 0.54.

Equation 7.18b. Test variance based on the data in Table 7.6

( )s = +

= +

=

 

 

2
TEST 1.53 2 .54

1.53 1.08

2.61

Equation 7.18a. Test variance based on the sum of individual 
items

= +å ås s r s sI IK I K I > K  2 2
TEST 2 ,

• s2
TEST = variance of total test. 

• sI
2 = variance of an individual item.

• rik = correlation between items i and k.

• si = standard deviation of item i.  

• sk = standard deviation of item k. 

• riksisk = �covariance of items i through k resulting in 
n(n − 1) terms.

• r s så IK I K2 = two times (2×) the sum of all n(n − 1) covari-
ance terms.
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If we replace the “items” in Table 7.6 with “total test scores” (i.e., the total score being 
based on the sum of items comprising a test), the same concept and statistical details will 
apply regarding how to derive the total variance for a set of total test scores. Next, we 
turn to the use of total test scores that are useful as individual components for deriving 
a composite score. 

In the true score model, total test scores are created by summing the item response
values (i.e., score values yielding points awarded) for each person. The total score for
a test derived in this manner is one form of a composite score. Another form of com-
posite score is derived by summing total test scores for two or more tests. In this case,
a composite score is defined as the sum of individual total test scores. Returning to the
data used throughout this book, suppose that you want to create a composite score
for crystallized intelligence by summing the total scores obtained on each of the four
subtests for crystallized intelligence. The summation of the four total test scores yields
a composite score that represents crystallized intelligence. Equation 7.19 illustrates
the derivation of a composite score for crystallized intelligence (labeled CIQ). The
composite score, CIQ, represents the sum of four subtests, each representing a different
measure of crystallized intelligence.

Given that composites are based on item total scores (for a single test) or total test 
scores (for a linear composite comprised of two or more tests), these composites for-
mally serve as parallel components on a test. Applying the definition of parallel test com-
ponents, reliability estimation proceeds according to the technique(s) appropriate for 
accurately representing the reliability of scores given the type of study. Specifically, the 
estimation of reliability may proceed by one or more of the following techniques. First, 
you may derive the stability of scores using the test–retest method. Second, you may 
derive the equivalence of scores based on parallel test forms. Third, you may derive the 
internal consistency of scores by using a sample of persons tested once with test items 

Equation 7.19. Observed score composite based on the linear 
sum of four crystallized intelligence tests

CIQ = X1crystallized1 + X2crystallized2 + X3crystallized3 + X4crystallized4

• CIQ = composite score expressed as the linear combination
of crystallized intelligence tests 1–4.

• X1crystallized1 = total score for crystallized intelligence test 1.

• X2crystallized2 = total score for crystallized intelligence test 2.

• X3crystallized3 = total score for crystallized intelligence test 3.

• X4crystallized4 = total score for crystallized intelligence test 4.
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serving as parallel pieces within the overall composite using the split-half reliability 
method or by deriving the internal consistency of scores using the Küder–Richardson for-
mula 20 (KR20) or (21) or Cronbach’s coefficient alpha. Each of the internal consistency 
techniques is based on there being as many parallel tests as there are items on the test. To 
derive the variance of the composite score, Equation 7.20a is required. Equation 7.20b 
illustrates the application of Equation 7.20a with data from Table 7.7.

Based on Equation 7.20b, the total variance of the composite using the data in Table 
7.7 is 214.92.

To conclude this section, recall that earlier in this chapter individual test items com-
prising a test were viewed as parallel parts of a test. The requirements for parallel tests or 
measurements include (1) equal mean true scores, (2) equal (item or test) standard devi-
ations, and (3) equal item (or test) variances. Specifically, test items (or total test scores) 

Equation 7.20b. Observed score variance of a composite score 
derived from crystallized tests 1–4 based on data in Table 7.7

s = + + + +

=

CIQ
2 47.12 24.93 12.40 21.66 108.81

214.92

Equation 7.20a. Observed score variance of a composite score 
derived from crystallized tests 1–4

¹
= + + + + ås s s s s r s sQ IJ I J

I J

2 2 2 2 2
CRYSTALLIZED1         CRYSTALLIZED2            CRYSTALLIZED3          CRYSTALLIZED4

• sCIQ
2 = variance of a composite score expressed as 

crystallized intelligence based on the sum of 
individual total test scores. 

• s2
CRYSTALLIZED1 = variance of the crystallized intelligence test 1.

• s2
CRYSTALLIZED2 = variance of the crystallized intelligence test 2.

• s2
CRYSTALLIZED3 = variance of the crystallized intelligence test 3.

• s2
CRYSTALLIZED4 = variance of the crystallized intelligence test 4.

•
¹
år s sIJ I J
I J

	= �sum of k(k − 1) covariance terms (i.e., k = 
intelligence tests 1–4), where i and j represent 
any pair of tests.
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serve as individual, yet parallel, parts of a test, providing a way to estimate the coefficient 
of reliability from a single test administration. Equation 7.21 provides a general form for 
deriving true score variance of a composite. Equations 7.20a and 7.21 are general because 
they can be used to estimate the variance of a composite when test scores exhibit unequal 
standard deviations and variances (i.e., the equations allow for the covariation between 
all items whether equal or unequal).

Table 7.7. Composite Scores for Crystallized Intelligence Tests 1–4

Crystallized total 
score test 1

Crystallized total 
score test 2

Crystallized total 
score test 3

Crystallized total 
score test 4

39 14 23 17
47 17 24 24
28 8 14 12
29 6 19 11
27 5 22 17
35 11 18 11
44 15 25 22
36 5 17 15
42 17 22 21
36 6 18 19

Mean 36.3 10.4 20.2 16.9
SD 6.86 4.99 3.52 4.65
Variance 47.12 24.93 12.40 21.66

Variance–covariance matrix

47.12 28.64 15.93 25.48
— 24.93 11.69 14.71
— — 12.40 12.36
— — — 21.66

Total variance = 214.92

Equation 7.21. General form for true score variance of a composite 

¹

= +

+ + + å

s s s

s s r s s

   Q

IJ I J
I J

2 2 2
TRUE_SCORE_CRYSTALLIZED1 TRUE_SCORE_CRYSTALLIZED2

2 2
TRUE_SCORE_CRYSTALLIZED3 TRUE_SCORE_CRYSTALLIZED4
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Using the foundations of the CTT model, in the next section, we review several 
techniques for estimating the coefficient of reliability in specific research or applied 
situations.

7.11 �Coefficient of Reliability: Methods of Estimation Based 
on Two Occasions

Coefficient of Stability: Test–Retest Method

Estimating the stability of test scores involves administering the same test to the same 
persons twice in as similar situations as possible. Once the data are collected, one cor-
relates the scores of two test administrations. Reliability estimation under this approach 
yields a coefficient of stability. For example, a researcher may want to know how con-
sistently persons respond to the same test at different times. In this context, the interest 
is in how stable a person’s observed scores are in relation to his or her true score on a trait 
or attribute of interest (e.g., intelligence).

The test–retest method relies on two assumptions. The first assumption is that a per-
son’s true score is stable over time and, therefore, does not change. The second assump-
tion is that a person’s error scores are stable over time. These two assumptions provide 
the basis for establishing the degree to which a group of persons’ scores exhibit equal 
reliability over time. The main challenge regarding the assumptions of the test–retest method 
is that true scores for persons do not change over time. There are three reasons for chal-
lenging this assumption. First, constructs that reflect “states” such as mood or anxiety 
are unlikely to remain stable over time (i.e., state-type attributes are highly variable over 
time such as days or weeks). For this reason, if a test is measuring mental “states,” the 
test–retest method for estimating reliability is seldom useful. Conversely, the construct 
of adult intelligence is classified as a “trait” or attribute that is stable over time. For con-
structs that reflect traits, the test–retest method is often useful because it provides a basis 
for establishing the degree to which a group of persons’ scores on a trait is equally reliable 
over time.

The second challenge to the assumption of the lack of change in a person’s true 
score over time is attributed to the length of the interval between the first and second 
test administrations. The longer the interval between the first and second testing periods, 
the greater the likelihood of change in the psychological attribute. If the time between 
the first and second testing periods is too short (i.e., less than 14 days), the chances of 
a carryover (memory or practice) or contamination (additional information acquired by 
persons) effect are high. The ideal time between the first and second test administrations 
is between 14 and 28 days (Nunnally & Bernstein, 1994). Regarding the acceptable level 
of test–retest reliability coefficients for tests of ability or achievement where significant 
diagnostic or educational decisions often hinge, values of at least .90 are recommended. 
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For personality, attitude, or interest inventories, test–retest coefficients are usually lower, 
and the recommended range is between .80 and .90.

The final challenge to the test–retest method is related to chronological age. For 
example, although research has established that adult intelligence is stable over time 
(Wechsler, 1997b), this is not the case with the intelligence of children.

Coefficient of Equivalence: Parallel (Alternate) Forms Method

As previously stated, one way to define the reliability coefficient is the correlation
between two strictly parallel tests. The parallel or alternate forms approach to reli-
ability estimation directly incorporates this definition. The alternate forms approach
to reliability estimation is useful when having parallel forms of a test is desirable. For
example, parallel test forms may be useful (1) when persons are required to repeat
an examination with a short time period between the two testing occasions or (2) to
reduce the possibility of cheating when a single group of persons is taking a test in the
same location.

To use the parallel forms technique, one creates two tests that, as nearly as possible, 
meet the requirement of strictly parallel tests. Recall that this requirement means that, for 
a group of persons, (1) the same set of true scores is being measured and the true scores 
are equal, and (2) error scores (or variances) are equal. If the requirements for strict par-
allelism are tenable, the two test forms are administered by using (1) the same persons in 
a retest situation or (2) a group of persons taking two forms of the test at the same time. 
Once the scores from the two tests are obtained, one proceeds by conducting a correla-
tion analysis between the scores obtained.

Perhaps the strongest criticism of the alternate forms method is that one can
argue that because two tests are composed of different items, the two forms can never
be exactly parallel—at least theoretically speaking. A second criticism of the alterna-
tive forms method is related to carryover or memory effects. Earlier in this chapter,
it was stated that in the true score model of parallel tests, error scores are required
to be uncorrelated. However, if a carryover effect exists, as is sometimes the case, the
errors of measurement for a group of persons will be correlated—sometimes substan-
tially. For these reasons, if the parallel forms method involves retesting the same per-
sons with an alternate form, the same concerns cited in the test–retest method apply
(i.e., carryover effects due to memory or additional information gleaned by persons
between testing occasions). In applied testing situations, if the researcher can demon-
strate strong evidence that the assumptions of the true score model of parallel tests are
tenable, then the alternate forms coefficient of reliability may be reported. Addition-
ally, in order to provide comprehensive evidence, the parallel forms method is often
accompanied by an estimate of internal consistency reliability—a subject covered in
the next section.
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230    PSYCHOMETRIC METHODS

7.12 Methods Based on a Single Testing Occasion

Split-Half Methods

Often it is not possible or desirable to compose and administer two forms of a test, as 
discussed earlier. Here we describe a method for deriving the reliability of total test scores 
based on parallel half tests. The split-half approach to reliability estimation involves 
dividing a test composed of a set of items into halves that, to the greatest degree pos-
sible, meet the assumptions of exact parallelism. The resulting scores on the respective 
half tests are then correlated to provide a coefficient of equivalence. The coefficient of 
equivalence is actually the reliability based on one of the half tests. However, remember that 
owing to the assumption of parallel test halves, we can apply a formula for deriving the 
reliability of scores on the total test using the Spearman–Brown formula. For tests com-
posed of items with homogeneous content (a.k.a. item homogeneity; Coombs, 1950), 
the split-half method proceeds according to the following steps. First, after scores on the 
total test are obtained, items are assigned to each half test in either (a) a random fashion 
or (b) according to order of item difficulty. This process yields one parallel subtest that is 
composed of odd-numbered items, and a second half test is composed of even-numbered 
items. The split-half technique described allows one to create two parallel half tests that 
are of equal difficulty and have homogeneous item content.

Earlier it was stated that two parallel half tests can be created with the intent to tar-
get or measure the same true scores with a high degree of accuracy. One way to ascertain 
if two tests are parallel is to ensure that the half tests have equal means and standard 
deviations. Also, the test items in the two half tests should have the same content (i.e., 
exhibit item homogeneity). A high level of item homogeneity ensures that, as the corre-
lation between the two half tests approaches 1.0, the approximation to equal true scores 
is as accurate as possible. If, however, the two half tests comprise items with partially 
heterogeneous content, then certain parts of the two half tests will measure different 
true scores. In this case, the two half tests should be created based on matching test halves, 
where test items have been matched on difficulty and content. Table 7.8 provides example 

Table 7.8.  Split-Half Data for 10 Persons from the 25-Item 
Crystallized Intelligence Test 2

Half test 1 Half test 2

Odd items (total score) Even items (total score)

Mean 10.30 4.20
Variance 6.23 5.96

Variance of total test: 21.17
Odd/even correlation (rii’): 0.69
Split-half reliability: 0.85
Guttman split-half reliability: 0.85
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data for illustrating the split-half and Guttman (1946) methods for estimating reliability 
based on half tests. Rulon’s formula (1939) (equivalent to Guttman’s formula) does not 
assume equal standard deviations (and variances) on the half test components. Finally, 
when the variances on the half tests are approximately equal, the Rulon formula and 
Guttman’s equation yield the same result as the split-half method with the Spearman–
Brown formula.

The SPSS syntax for computing the split-half reliability based on the model of paral-
lel tests (not strictly parallel) is provided below.

RELIABILITY
/VARIABLES=cri2_01 cri2_02 cri2_03 cri2_04 cri2_05 cri2_06 
cri2_07 cri2_08 cri2_09 cri2_10 cri2_11 cri2_12 cri2_13 cri2_14 
cri2_15 cri2_16 cri2_17 cri2_18 cri2_19 cri2_20 cri2_21 cri2_22 
cri2_23 cri2_24 cri2_25
/SCALE('ALL VARIABLES') ALL
/MODEL=PARALLEL.

The resulting output is provided in Tables 7.9a and 7.9b.
Equation 7.22 can be extended to deriving the reliability of any composite (e.g.,

the parallel components may be subtest total scores rather than individual items).
Equation 7.23 illustrates Rulon’s formula, as applied by Guttman, for total test score
reliability. Rulon’s formula is based on the error variances on half tests and the total
test variance.

Table 7.9b. Reliability Statistics
Common Variance .184
True Variance .028
Error Variance .156
Common Inter-Item 
Correlation

.151

Reliability of Scale .816
Reliability of Scale 
(Unbiased)

.857

Table 7.9a. Test for Model Goodness of Fit
Chi-Square Value -20.653

df 323
Sig 1.000

Log of Determinant of Unconstrained Matrix .000
Constrained Matrix -44.767

Under the parallel model assumption
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232    PSYCHOMETRIC METHODS

The SPSS syntax for computing the Guttman model of reliability is as follows:

RELIABILITY
/VARIABLES=cri2_01 cri2_02 cri2_03 cri2_04 cri2_05 cri2_06 
cri2_07 cri2_08 cri2_09 cri2_10 cri2_11 cri2_12 cri2_13 cri2_14 
cri2_15 cri2_16 cri2_17 cri2_18 cri2_19 cri2_20 cri2_21 cri2_22 
cri2_23 cri2_24 cri2_25
/SCALE('ALL VARIABLES') ALL
/MODEL=GUTTMAN.

The Guttman model provides six lower-bound coefficients (i.e., expressed as lambda 
coefficients). The output for the Guttman reliability model is provided in Table 7.10. The 
lambda 3 (L3) is based on estimates of the true variance of scores on each item and is also 
expressed as the average covariance between items and is analogous to coefficient alpha. 
Guttman’s lambda 4 is interpreted as the greatest split-half reliability. 

Table 7.10. Reliability 
Statistics
Lambda 1 .783

2 .865
3 .816
4 .848
5 .830
6 .

N of Items 25

Equation 7.23. Rulon’s formula for total test score reliability based 
on the correlation between parallel split-halves

æ ö
¢

é ù+= -ê úç ÷è øê úë û

s sr
sXX

2 2
HALF  TEST1 HALF  TEST2

2
TOTAL TEST

2 1

Equation 7.22. Spearman–Brown formula for total test score reli-
ability based on the correlation between parallel split-halves

¢
¢

¢
=

+
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r
II
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II
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1

• rií   = correlation between half tests.

• rxx́  = �split-half reliability based on the Spearman–Brown
formula.
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Internal Consistency: Methods Based on Covariation among Items

The final section of this chapter introduces approaches based on covariation among or 
between test items. The methods presented here were developed to provide a way to 
estimate the coefficient of reliability from a single test administration without splitting 
the single test into parallel halves. Specifically, the methods presented in this chapter 
include coefficient alpha, the Küder–Richardson 20, and the Küder–Richardson 21 
formulas.

Coefficient Alpha

The first and most general technique for the estimation of internal consistency reliability
is known as coefficient alpha and is attributed to L. J. Cronbach (1916–2001). In his work
(1951), Cronbach provided a general formula for deriving the internal consistency of scores.
Coefficient alpha is a useful formula because of its generality. For example, alpha is effective
for estimating score reliability for test items that are scored dichotomously (correct/incorrect),
or for items scored on an ordinal level of measurement (e.g., Likert-type or rating scale items)
and even for essay-type questions that often include differential scoring weights. For these
reasons, coefficient alpha is reported in the research literature more often than any other
coefficient. The general formula for coefficient alpha is provided in Equation 7.24. Table 7.11
includes summary data for 10 persons on the 25-item crystallized intelligence test 2 used in
the previous section on split-half methods.

The total test variance for the crystallized intelligence test 2 is 19.05 (defined as the 
sum of the squared deviations from the mean) for 10 persons in this example data. Read-
ers are encouraged to conduct the calculation of coefficient alpha using the required parts 
of Equation 7.24 by accessing the raw item-level Excel file: “Reliability_Calculation_
Examples.xlsx” on the companion website (www.guilford.com/price2-materials). Knowing 
that the test is composed of 25 items, the total test variance is 19.05 and the sum of the 

Equation 7.24. Coefficient alpha

æ öS= -ç ÷- è ø
sa

s
I

X

K

K

2

2

ˆ
ˆ 1

ˆ1

• â	 = coefficient alpha.

• k	 = number of items.

• sI
2ˆ 	 = variance of item i.

• sX
2ˆ 	 = total test variance.

Guilford_Psychometric Methods_CH.07.indd             233             Manila Typesetting Company             10/07/2016            09:18AM



Cop
yri

gh
t ©

 20
17

 The
 G

uil
for

d P
res

s

234    PSYCHOMETRIC METHODS

item-level variances is 4.13, we can insert these values into Equation 7.23 and derive the 
coefficient alpha as .82.

7.13 �Estimating Coefficient Alpha: Computer Program  
and Example Data

The SPSS syntax and SAS source code that produces output using the data file .sav is 
provided on the next page. The dataset may be downloaded from the companion website 
(www.guilford.com/price2-materials).

Table 7.11. Item Summary Data for 10 Persons 
from Crystallized Intelligence Test 2

Item

Proportion 
correct

Proportion 
incorrect Item variance

p q p*q

1 0.9 0.1 0.09
2 0.9 0.1 0.09
3 0.8 0.2 0.16
4 0.8 0.2 0.16
5 0.9 0.1 0.09
6 0.8 0.2 0.16
7 0.9 0.1 0.09
8 0.9 0.1 0.09
9 0.6 0.4 0.24

10 0.7 0.3 0.21
11 0.7 0.3 0.21
12 0.6 0.4 0.24
13 0.8 0.2 0.16
14 0.8 0.2 0.16
15 0.6 0.4 0.24
16 0.7 0.3 0.21
17 0.4 0.6 0.24
18 0.3 0.7 0.21
19 0.3 0.7 0.21
20 0.8 0.2 0.16
21 0.3 0.7 0.21
22 0.2 0.8 0.16
23 0.2 0.8 0.16
24 0.1 0.9 0.09
25 0.1 0.9 0.09
Sp = 15.1 Sp*q = 4.13
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SPSS program syntax for coefficient alpha using data file Coefficient_Alpha_
Reliability_N_10_Data.SAV

RELIABILITY
/VARIABLES=cri2_01 cri2_02 cri2_03 cri2_04 cri2_05 cri2_06 
cri2_07 cri2_08 cri2_09   cri2_10 cri2_11 cri2_12 cri2_13 
cri2_14 cri2_15 cri2_16 cri2_17 cri2_18 cri2_19 cri2_20 cri2_21 
cri2_22 cri2_23 cri2_24 cri2_25
/SCALE('ALL VARIABLES') ALL
/MODEL=ALPHA
/STATISTICS=DESCRIPTIVE SCALE
/SUMMARY=TOTAL.

Tables 7.12a–d are derived from the SPSS program.

Table 7.12a. Reliability Statistics
Cronbach’s Alpha N of Items

.816 25

Table 7.12b.  Item Statistics
Mean Std. Deviation N

cri2_01 .90 .316 10
cri2_02 .90 .316 10
cri2_03 .90 .316 10
cri2_04 .80 .422 10
cri2_05 .90 .316 10
cri2_06 .80 .422 10
cri2_07 .80 .422 10
cri2_08 .90 .316 10
cri2_09 .60 .516 10
cri2_10 .70 .483 10
cri2_11 .70 .483 10
cri2_12 .60 .516 10
cri2_13 .80 .422 10
cri2_14 .80 .422 10
cri2_15 .60 .516 10
cri2_16 .70 .483 10
cri2_17 .40 .516 10
cri2_18 .30 .483 10
cri2_19 .30 .483 10
cri2_20 .20 .422 10
cri2_21 .30 .483 10
cri2_22 .20 .422 10
cri2_23 .20 .422 10
cri2_24 .10 .316 10
cri2_25 .10 .316 10
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236    PSYCHOMETRIC METHODS

SAS source code for coefficient alpha using SAS data file alpha_reliability_data

libname work 'LPrice_09';
data temp; set work.alpha_reliability_data;
proc corr data=temp nosimple alpha;
Title 'Coefficient Alpha using Crystallized Intelligence Example
Data N=10 ';
var cri2_01 - cri2_25;
run; quit;

Table 7.13 is produced from the SAS program.

Table 7.12c.  Item–Total Statistics

Scale Mean if 
Item Deleted

Scale Variance if 
Item Deleted

Corrected Item-
Total Correlation

Cronbach’s 
Alpha if Item 

Deleted
cri2_01 13.60 21.378 -.106 .824
cri2_02 13.60 20.489 .202 .815
cri2_03 13.60 20.267 .281 .812
cri2_04 13.70 18.233 .765 .791
cri2_05 13.60 21.378 -.106 .824
cri2_06 13.70 18.233 .765 .791
cri2_07 13.70 19.344 .443 .806
cri2_08 13.60 19.156 .690 .799
cri2_09 13.90 18.544 .530 .800
cri2_10 13.80 22.178 -.274 .839
cri2_11 13.80 18.844 .498 .802
cri2_12 13.90 19.433 .322 .811
cri2_13 13.70 18.456 .699 .794
cri2_14 13.70 18.233 .765 .791
cri2_15 13.90 19.656 .272 .814
cri2_16 13.80 17.511 .847 .784
cri2_17 14.10 17.878 .692 .791
cri2_18 14.20 18.400 .611 .796
cri2_19 14.20 21.733 -.178 .834
cri2_20 14.30 20.233 .199 .816
cri2_21 14.20 20.844 .020 .825
cri2_22 14.30 19.344 .443 .806
cri2_23 14.30 20.233 .199 .816
cri2_24 14.40 20.267 .281 .812
cri2_25 14.40 21.156 -.031 .822

Table 7.12d. Scale Statistics
Mean Variance Std. Deviation N of Items

14.50 21.167 4.601 25
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Reliability    237

Table 7.13.  SAS Output for Coefficient Alpha
Coefficient Alpha using Crystallized Intelligence Example Dat N=10               1

10:45 Tuesday, November 15, 2011

The CORR Procedure

25  
Vari-
ables:

CRI2_01 CRI2_02 CRI2_03 CRI2_04 CRI2_05 CRI2_06 CRI2_07 CRI2_08

CRI2_09 CRI2_10 CRI2_11 CRI2_12 CRI2_13 CRI2_14 CRI2_15 CRI2_16

CRI2_17 CRI2_18 CRI2_19 CRI2_20 CRI2_21 CRI2_22 CRI2_23 CRI2_24

CRI2_25

Cronbach Coefficient Alph

Variables Alpha

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Raw 0.815836

Standardized 0.808206

Cronbach Coefficient Alpha with Deleted Variabl

Raw Variables Standardized Variables

Deleted 
Variable

Correla-
tion with 
Total Alpha

Correla-
tion with 
Total Alpha Label

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒƒƒƒƒ

CRI2_01 -.106391 0.824370 -.117827 0.821956 cri2_01

CRI2_02 0.201823 0.814864 0.176187 0.809214 cri2_02

CRI2_03 0.280976 0.812357 0.269409 0.805024 cri2_03

CRI2_04 0.765257 0.791034 0.766489 0.781409 cri2_04

CRI2_05 -.106391 0.824370 -.139250 0.822857 cri2_05

CRI2_06 0.765257 0.791034 0.766489 0.781409 cri2_06

CRI2_07 0.443376 0.805534 0.423210 0.797949 cri2_07

CRI2_08 0.690412 0.798951 0.664913 0.786412 cri2_08

CRI2_09 0.529629 0.800271 0.518662 0.793454 cri2_09

CRI2_10 -.273526 0.838547 -.252589 0.827561 cri2_10

CRI2_11 0.498087 0.802297 0.516984 0.793534 cri2_11

CRI2_12 0.322139 0.811395 0.307313 0.803299 cri2_12

CRI2_13 0.699294 0.794074 0.689362 0.785216 cri2_13

CRI2_14 0.765257 0.791034 0.766489 0.781409 cri2_14

CRI2_15 0.271781 0.814019 0.293075 0.803948 cri2_15

CRI2_16 0.846512 0.783933 0.851875 0.777130 cri2_16

CRI2_17 0.692078 0.791202 0.700026 0.784693 cri2_17

CRI2_18 0.611315 0.796471 0.625044 0.788351 cri2_18

CRI2_19 -.177627 0.834356 -.192228 0.825069 cri2_19

CRI2_20 0.199188 0.815987 0.203809 0.807980 cri2_20

CRI2_21 0.020153 0.825438 -.003166 0.817071 cri2_21

CRI2_22 0.443376 0.805534 0.470516 0.795731 cri2_22

CRI2_23 0.199188 0.815987 0.215163 0.807471 cri2_23

CRI2_24 0.280976 0.812357 0.297003 0.803769 cri2_24

CRI2_25 -.030557 0.822068 -.048887 0.819032 cri2_25
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238    PSYCHOMETRIC METHODS

7.14 �Reliability of Composite Scores Based  
on Coefficient Alpha

In reality, tests rarely meet the assumptions required of strictly parallel forms. Therefore, 
a framework is needed for estimating composite reliability when the model of strictly 
parallel tests is untenable. Estimating the composite reliability of scores in the case of 
essentially tau-equivalent or congeneric tests is accomplished using the variance of the 
composite scores and all of the covariance components of the subtests (or individual 
items if one is working with a single test). An estimate is provided that is analogous to 
coefficient alpha and is simply an extension from the item-level data to subtest level data 
structures. Importantly, alpha provides a lower bound to the estimation of reliability in the 
situation where tests are nonparallel. The evidence that coefficient alpha provides a lower 
bound estimate of reliability is established as follows. First, there will be at least one 
subtest of those comprising a composite variable that exhibits a variance greater than or 
equal to its covariance with any other of the subtests. Second, for any two tests that are 
not strictly parallel, the sum of their true score variances is greater than or equal to twice 
their covariance. Finally, the sum of the true score variance for nonparallel tests (k) will 
be greater than or equal to the sum of their k(k – 1) covariance components divided by 
(k – 1). Application of the inequality yields Equation 7.25.

Küder–Richardson Formulas 20 (KR20) and 21 (KR21)

In 1937, Küder and Richardson developed two formulas aimed at solving the problem of 
the lack of a unique solution provided by the split-half method of reliability estimation. 
Specifically, the Küder–Richardson approaches are based on item-level statistical proper-
ties rather than the creation of two parallel half tests. The two formulas developed, KR20 
and KR21, are numbered according to the steps involved in their derivation. Both KR20 
and KR21 are closely related to coefficient alpha. In fact, the two formulas can be viewed 
as more restrictive versions of coefficient alpha. For example, the KR20 formula is only 
applicable to dichotomously (correct/incorrect) scored items (Equation 7.26). 

To explain, notice that the numerator inside the brackets of Equation 7.26 is the sum 
of the product of the proportion of persons correctly responding to each item on the 

Equation 7.25. Reliability of a composite equivalent to coefficient 
alpha

¢
æ öS³ -ç ÷- è ø
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•	 rCC΄	 =	reliability of the composite.

•	SsI
2ˆ 	=	variance for subtest i.

•	sC
2ˆ 	 =	total composite test variance.
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Reliability    239

test multiplied by the proportion of persons responding incorrectly to each item on the 
test. Comparing Equation 7.24 for coefficient alpha, we see that the numerator within 
the brackets involves summation of the variance of all test items. The primary difference 
between the two equations is that in KR20 the variance for dichotomous items is based 
on multiplying proportions, whereas in coefficient alpha the derivation of item variance 
is not restricted to multiplying the proportion correct times the proportion incorrect for 
an item because items are allowed to be scored on an ordinal or interval level of mea-
surement (e.g., Likert-type scales or continuous test scores on an interval scale). Finally, 
where all test items are of equal difficulty (e.g., the proportion correct for all items are 
equal), the KR21 formula applies and is provided in Equation 7.27.

For a detailed exposition of the KR20, KR21, and coefficient alpha formulas with sam-
ple data, see the Excel file titled “Reliability_Calculation_Examples.xlsx” located on the 
companion website (www.guilford.com/price2-materials).

Equation 7.26. Küder–Richardson formula 20

Sæ ö= -ç ÷è ø- sX

PQK
R

K
20 21

ˆ1

•	KR20	 =	 coefficient alpha.  

•	k	 =	 number of items.

•	pq	 =	� variance of item i as the product of the proportion 
of correct and proportion incorrect responses over 
persons.

•	sX
2ˆ 	 =	 total test score variance.

Equation 7.27. Küder–Richardson formula 21

é - ù= -ê ú- ë û
m m

sX

K K
K R

K K
21 2

ˆ ˆ( )
1

ˆ1

•	k	 = number of items.

•	 m̂	 = total score on the test.

•	sX
2ˆ 	= total test score variance.
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240    PSYCHOMETRIC METHODS

7.15 �Reliability Estimation Using the Analysis  
of Variance Method

Another useful and general approach to estimating the reliability of test scores is the 
analysis of variance (Hoyt, 1941). Consider the formulas for coefficient alpha, KR20 and 
KR21. Close inspection reveals that the primary goal of these formulas is the partitioning 
of (1) variance attributed to individual items and (2) total variance collectively contrib-
uted by all items on a test. Similarly, in the analysis of variance (ANOVA), one can parti-
tion the variance among persons and items, yielding the same result as coefficient alpha. 
The equation for the ANOVA method (Hoyt, 1941) is provided in Equation 7.28.

To illustrate Equation 7.28 using example data, we return to the data used in the 
examples for coefficient alpha. Restructuring the data file as presented in Table 7.14 
ensures the correct layout for running ANOVA in SPSS. Note that Table 7.14 only pro-
vides a partial listing of the data (because there are 25 items on the test) used in the 
example results depicted in Table 7.15.

The data layout example in Table 7.14 continues until all persons, items, and scores 
are entered. Next, the following SPSS syntax is used to produce the mean squares required 
for calculation of the reliability coefficient.

SPSS syntax to produce Table 7.15

UNIANOVA score BY person item
/METHOD=SSTYPE(3)
/CRITERIA=ALPHA(.05)
/DESIGN=person item person*item.

Inserting the mean squares for persons and the person by items interaction yields a 
reliability coefficient of .82—the same value as that which resulted using the formula for 
coefficient alpha. Applying the person and person by item mean squares to the ANOVA 
approach yields rXX¢ = .847 – .156/.847 = .82.

Equation 7.28. ANOVA method for estimating the coefficient 
of reliability 

*
¢

-
=rXX

MS MS

MS
PERSONS PERSONS ITEMS

PERSONS

•	 rXX¢	 =	 coefficient of reliability.

•	MSpersons	 =	 variability attributed to persons.

•	MSpersons*items	=	� variability attributed to persons and items 
together.
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7.16 Reliability of Difference Scores

An important aspect of score reliability for certain types of research relates to how change over 
time affects the reliability of scores (Linn & Slinde, 1977; Zimmerman & Williams, 1982; 
Rogosa, Brandt, & Zimowski, 1982). For example, consider the case where a difference score 
based on fluid intelligence and crystallized intelligence is of interest for diagnostic reasons. 
Although the primary research question may be about whether the change in score level is 
statistically different, a related question focuses on how reliability is affected by the change in 
score level. To address the previous question, we consider the reliability of change scores as 
a function of (1) the reliability of the original scores used for computation of the difference 

Table 7.14. Data Layout for Reliability 
Estimation Using SPSS ANOVA

Person Item Score

1 1 1
2 1 1
3 1 1
4 1 1
5 1 1
6 1 0
7 1 1
8 1 1
9 1 1

10 1 1

Note. Table consists of 10 persons, the first item out of 25, and persons’ 
scores on item 1.

Table 7.15. ANOVA Output: Tests of Between-
Subjects Effects

Dependent Variable: score

Source

Type III 
Sum of 
Squares df

Mean 
Square

       
       
person 7.620 (n -1) = 9 .847
item 19.600 (k -1) = 24 .817
person * item 33.680 (n-1)(k-1) =216 .156
       
Total 145.000 250  
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score, and (2) the correlation between the scores obtained on the two tests. Based on these 
two components, the usefulness of calculating the reliability of change scores depends on the 
psychometric quality of the measurement instruments.

The research design of a study plays a crucial role in the application and interpreta-
tion of the reliability of change scores. For example, if groups of subjects selected for a 
study are based on a certain range of pretest score values, then the difference score will 
be a biased estimator of reliable change (e.g., due to restricted range of pretest scores). 
Elements of the research design also play an important role when using change scores. 
For example, random assignment to study groups provides a way to make inferential 
statements that are not possible when studying intact groups. Equation 7.29 provides the 
formula estimating the reliability of difference scores based on pretest to posttest change. 
Note that Equation 7.29 incorporates all of the elements of reliability theory presented 
thus far in this chapter. Within the true score model, one begins with the fact that it is 
theoretically possible to calculate a difference score. Given this information, the usual 
true score algebraic manipulation (i.e., true scores to observed scores) applies. Equation 
7.29 illustrates the reliability of difference scores.

To illustrate the use of Equation 7.29, we use crystallized (serving as test 1) and fluid 
intelligence (serving as test 2) subtest total scores. In Equation 7.30, application of our 
score data is applied.The following information is obtained from the GfGc.sav dataset 
and is based on the total sample (N = 1,000).

Equation 7.29. Reliability of difference scores 

¢ ¢ ¢
¢

+ -=
+ -

r s r s r s sr
s s r s s

X X X X X X X X X X
DD

X X X X X X

1 1 1 2 2 2 1 2 1 2

1 2 1 2 1 2

2 2

2 2

ˆ ˆ 2

2

•	 rDD¢	 = reliability of a difference score.

•	rX X1 1
ˆ 	 = reliability of test 1.

•	 X X2 2r̂ 	 = reliability of test 2.

•	 X1

2s 	 = variance of scores on test 1. 

•	 X2

2s 	 = variance of scores on test 2.

•	 X X1 22r 	 = �two times the correlation between tests 1 and 2.

•	 X X1 2s s 	= �product of the standard deviation of test 1 and 
test 2.

•	 ′X X1 1r̂ 	 = reliability of test 1.

•	 X X2 2r̂ 	 = reliability of test 2.
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7.17 Application of the Reliability of Difference Scores

To ensure the existence of highly reliable difference scores, the following conditions should 
be present. Both tests (i.e., scores) should exhibit high reliability but be correlated with each 
other at a low to moderate level (e.g., .30–.40). This situation produces reliability of differ-
ence scores that are high. Finally, the psychometric quality of the tests used to derive dif-
ference scores for the analysis of change is crucial to produce reliable change scores. The 
concept of the reliability of change scores over time can also be extended beyond the analysis 
of discrepancy between different constructs (e.g., crystallized and fluid intelligence presented 
here) or basic pretest to posttest analyses to analyze change over time. For example, analytic 
techniques such as longitudinal item response theory (IRT; covered in Chapter 10) and hier-
archical linear and structural equation modeling provide powerful frameworks for the analy-
sis of change (Muthen, 2007; Zimmerman, Williams, & Zumbo, 1993; Raudenbush, 2001; 
Card & Little, 2007).

Table 7.16. Descriptive Statistics and Reliability Estimates for Crystallized 
and Fluid Intelligence Tests

Crystallized intelligence subtest  
total score (test 1)

Fluid intelligence subtest  
total score (test 2)

Mean 81.57 33.00
Standard deviation 22.41 11.38
Reliability 0.95 0.89

Equation 7.30. Application of the equation for the reliability 
of difference scores using statistics in Table 7.16

+ −
=

+ −

+ −
=

−

−
=

−

=

=

.95(502.21) .89(129.50) 2(.463)(22.41)(11.38)

502.21 129.50 2(.463)(22.41)(11.38)

477.10 115.25 (.926)(255.02)

631.71 (.926)(255.02)

592.35 236.15

631.71 236.15

356.20

395.56

.90

¢rDD
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7.18 Errors of Measurement and Confidence Intervals

Reliability has been presented so as to provide information regarding the consistency or 
stability of test scores. Alternatively, it is also useful to view how “unreliable” test scores 
are. Such unreliability is regarded as a discrepancy between observed scores and true 
scores and is expressed as the error of measurement relative to scores on a test. In this 
section, three different approaches to deriving estimates of errors of measurement are pre-
sented along with the interpretation of each using example data. These three approaches 
are from Lord and Novick (1968, pp. 67–68). The first technique presented is the stan-
dard error of measurement, ′= = −X T E X XX.ˆ ˆ ˆ1s s s r , and is based on the error in pre-
dicting a person’s observed score given the person’s true score on randomly parallel tests. 

The second technique is the standard error of estimation, ′ ′= −T X X XX XX.ˆ ˆ ˆ(1s s r r ), 
and is based on the error in predicting a person’s true score from his or her observed 
score. It is useful for establishing confidence limits and intervals for true scores based on 
observed scores (i.e., based on the standard deviation of the errors of estimation of true 
score given an observed score). The third technique is the standard error of predic-
tion, ′= −Y X Y XX

2
.ˆ 1s s r ,

 
and is useful for predicting scores on test form Y from parallel 

test form X. The next section provides application of the SEM and the standard error of 
prediction.

7.19 Standard Error of Measurement

The standard error of measurement (SEM; Eŝ ) provides an estimate of the discrepancy 
between a person’s true score and observed score on a test of interest. Measurement error 
for test scores is often expressed in standard deviation units, and the SEM indexes the stan-
dard deviation of the distribution of measurement error. Formally, the SEM ( Eŝ ) is defined as 
the standard deviation of the discrepancy between a person’s true score and observed score 
over infinitely repeated testing occasions. Gulliksen (1950b, p. 43) offered an intuitive defi-
nition of the SEM as “the error of measurement made in substituting the observed score for 
the true score.” Equation 7.31 illustrates the standard error of measurement.

Equation 7.31. Population SEM

′= −E X XXˆ ˆ1s s r

•	 Eŝ 	 =	 population standard error of measurement.

•	 sX	 =	 observed score population standard deviation.

•	 ′XXr̂ 	=	 coefficient of reliability based on scores on a test.
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When applying Equation 7.31 to score data, sample estimates rather than population 
parameters are typically used to estimate the SEM.

The SEM provides a single index of measurement error for a set of test scores. It can 
be used for establishing confidence limits and developing a confidence interval around 
a person’s observed score given the person’s estimated true score. Within classical test theory, 
a person’s true score is fixed (or constant), and it is the observed and error scores that ran-
domly fluctuate over repeated testing occasions (Lord & Novick, 1968, p. 56). One can 
derive confidence limits and an associated interval for observed scores using the SEM. 
However, because a person’s true score is of primary interest in the true score model, one 
should first estimate the true score for a person prior to using Equation 7.31 to derive 
confidence intervals.

Two problems occur when not accounting for true score: (1) a regression effect (i.e., 
the imperfect correlation between observed and true scores, which produces a regression 
toward the group mean), and (2) the impact of heteroscedastic (nonuniform) errors 
across the score continuum (Nunnally & Bernstein, 1994, p. 240). Consequently, sim-
ply using the SEM has the effect of overcorrecting owing to larger measurement error in 
observed scores as compared to true scores. Confidence intervals established without 
estimating true scores will lack symmetry (i.e., lack the correct precision across the score 
scale) around observed scores. To address the issue of regression toward the mean due 
to errors of measurement, Stanley (1970), Nunnally and Bernstein (1994), and Glutting, 
McDermott, and Stanley (1987) note that one should first estimate true scores for a per-
son and then derive estimated true score–based confidence intervals that can be used 
with observed scores. This step, illustrated in Equation 7.32, overcomes the problem 
of lack of symmetry from simply applying the SEM to derive confidence intervals for 
observed scores.

As an example, consider estimating a true score for a person who obtained an 
observed score of 17. Returning to Tables 7.3 and 7.4, we see that the mean is 11.50, the 

Equation 7.32. Estimated true score derived using a deviation-
based observed score multiplied by the reliability estimate corrected 
in relation to the group mean

′= − +XX I J JT X X Xˆ ˆ ( )r

•	 T̂	 =	 estimated true score.

•	Xi	 =	 observed score for a person.

•	 JX 	 =	 mean score for a group of persons.

•	 −IX XJ	=	 deviation score for person i.

•	 ′XXρ̂ 	 =	 coefficient of reliability.
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standard deviation of observed scores is 4.3, and the reliability is .82. Application of this 
information to Equation 7.33 provides the following result.

As noted earlier, lack of symmetry for confidence intervals derived with an SEM 
without first estimating true scores neglects accounting for a regression effect. The regres-
sion effect causes biased scores either upward or downward, depending on their location 
relative to the group mean. For example, high observed scores are typically further away 
from the mean of the group (i.e., they exhibit an upward bias effect), and low scores are 
typically biased downward lower than the actual observed score. For these reasons, it is 
correct to establish confidence intervals or probable ranges for a person’s observed score given 
their (fixed or regressed) true score. Using the estimated true score for a person, one can 
apply Equation 7.33 to Equation 7.34a to derive a symmetric confidence interval for true 
scores that can be applied to a person’s observed scores. Equation 7.34a can be expressed 
as .ˆ X Ts  to show that applying the SEM to estimated true scores yields the prediction of 

Equation 7.34a. SEM expressed as the prediction of observed 
score on true score

′= −X T X XX.ˆ ˆ1s s r

•	 X T.ŝ 	=	�standard error of measurement as the prediction of 
observed score from true score.

•	 sX	 =	observed score population standard deviation.

•	r ′XXˆ 	 =	coefficient of reliability based on scores on a test.

Equation 7.33. Estimated true score expressed as a regressed 
observed score using reliability of .82, observed score of 17, and 
group mean of 11.50

= − +

= +

= +

=

T̂ .82(17 11.5) 11.5

.82(5.5) 11.5

4.51 11.5

16.01
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observed scores from true scores. The resulting confidence intervals will be symmetric 
about a person’s true score but asymmetric about their observed score. This approach 
to developing confidence intervals is necessary in order to account for regression toward the 
mean test score.

Equation 7.35a provides the following advantages. First, Stanley’s method is based 
on a score metric that is expressed in estimated true score units (i.e., T − T′ˆ , the T¢ = pre-
dicted true score) (Glutting et al., 1987). Second, as Stanley demonstrated (1970), his 

Equation 7.35a. Stanley’s method for establishing confidence 
limits—expressed in true score units—based on estimated true scores

′± X T XXT Z .
ˆ ˆ ˆ( )( )( )s r

•	 T̂	 =	estimated true score.

•	z	 =	standard normal deviate (e.g., 1.96).

•	 X T.ŝ 	 =	�standard error of measurement as the prediction of 
observed score from true score.

•	 r̂XX¢	 =	coefficient of reliability.

Equation 7.34b. Illustration of Equation 7.34a

′= −

= −

=

=

X T X XX.ˆ ˆ1

4.3 1 .82

4.3(.42)

1.82

s s r

•	 X T.ŝ 	=	� standard error of measurement as the prediction of 
observed score from true score.

•	 sX	 =	 observed score population standard deviation.

•	 ′XXr̂ 	 =	 coefficient of reliability based on scores on a test.
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method adheres to the classical true score model assumption that states, for a population 
of examinees, errors of measurement exhibit zero correlation with true scores. 

Interpretation

To facilitate understanding that a person’s true score will fall within a confidence interval 
based on that person’s observed score, consider the following scenario. First, using the 
previous example, let’s assume that a person’s true score is 16, the reliability is .82, and the 
standard error of measurement is 1.82. Next, let’s assume that this person is repeatedly 
tested 1,000 times. Of the 1,000 repeated testing occasions, 950 (95%) would lie within 
2.94 points of their true score (e.g., between 13.07 and 18.95). Fifty scores would fall 
outside of the interval 13.07 to 18.95. Finally, if a confidence interval is derived for each 
of the person’s 1,000 observed scores, 950 of the intervals would be generated around 
observed scores between 13.07 and 18.95 (each interval would contain the person’s true 
score). From the previous explanation, we see that 5% of the time the person’s true score 
would not fall within the interval 13.07 to 18.95. However, there is a 95% chance that the 
confidence interval generated around the observed score of 16 will contain the person’s 
true score.

A common alternate approach to establishing confidence limits and intervals offered 
by Lord and Novick (1968, pp. 68–70) does not always meet the classical true score 
model requirement of zero correlation between true and error scores—unless the reliabil-
ity of the test is perfect (i.e., 1.0). Lord and Novick’s (1968, p. 68) approach is expressed 
in obtained score units (e.g., ˆ −T T) and is provided in Equation 7.36a.

Equation 7.35b. Application of Stanley’s method for establishing 
a 95% confidence interval for observed scores based on estimated 
true score of 16.01

±

=

= ±

= −

T

 

 

  

ˆ (1.96)(1.82)(.82)

(1.96)(1.5)

16.01 2.94

13.07 18.95

•	 T̂	 =	 estimated true score (16.01).

•	z	 =	 standard normal deviate (e.g., 1.96).

•	 X T.ŝ 	 =	� standard error of measurement as the prediction of 
observed score from true score (1.82).

•	 r̂XX¢	 =	 coefficient of reliability (.82).
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Continuing with Lord and Novick’s approach, we will next illustrate the probability 
that a person’s true score will fall within a confidence interval based on their observed 
score. Again, we assume that a person’s true score is 16 and that the standard error of 
measurement is 1.82. Next, let’s assume that this person is repeatedly tested 1,000 times. 
Of the 1,000 repeated testing occasions, 950 (95%) would lie within 3.25 points of their 
true score (e.g., between 12.76 and 19.26). Notice that the confidence interval is wider 
in Lord and Novick’s method (see Equation 7.36a) because the product of the z-ordinate 
and the estimated standard error is multiplied by the square root of the reliability. Fifty 
scores would fall outside of the interval 12.76 to 19.26. Finally, if a confidence interval 
was derived for each of the person’s 1,000 observed scores, 950 of the intervals would be 
generated around observed scores between 12.76 and 19.26 (each interval would contain 
the person’s true score). It is apparent from the previous explanation that 5% of the time 
the person’s true score would not fall within the interval 12.76 to 19.26. However, there 
is a 95% chance that the confidence interval generated around the observed score of 16 
will contain the person’s true score.

Equation 7.36a. Lord and Novick’s method for establishing confi-
dence limits—expressed in obtained score units—based on estimated 
true scores

′± X T XXT Z .
ˆ ˆ ˆ( )( )σ ρ

•	 T̂	 =	 estimated true score.

•	z	 =	 standard normal deviate (e.g., 1.96).

•	 X T.ŝ 	 =	� standard error of measurement as the prediction of 
observed score from true score.

•	 ′XXr̂ 	=	� square root of coefficient of reliability or the reli-
ability index.

Equation 7.36b. Application of Lord and Novick’s method 
for establishing a 95% confidence interval for observed scores based 
on estimated true score of 16.01

±

=

= ±

= −

T

 

ˆ (1.96)(1.82)(.91)

(1.96)(1.66)

16.01 3.25

12.76 19.26
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7.20 Standard Error of Prediction

The standard error of prediction is useful for predicting the probable range of scores on 
one form of a test (e.g., Y), given a score on an alternate parallel test (e.g., X). For exam-
ple, using the crystallized intelligence test example throughout this chapter, one may be 
interested in what score one can expect to obtain on a parallel form of the same test. To 
derive an error estimate to address this question, Equation 7.37a is required.

Equation 7.37a. Standard error of prediction expressed as the 
prediction of test score Y on parallel test score X

′= −Y X Y XX
2

.ˆ 1σ σ ρ

•	σY X.ˆ 	 =	standard error of prediction.

•	σY	 =	standard deviation of test Y.

•	ρ ′XX
2 	 =	reliability of test X squared.

Equation 7.37b. Derivation of the standard error of prediction

= −

=

=

=

Y X
2

. 4.3 1 .82

4.3 .327

4.3(.572)

σ

2.46

Equation 7.37c. Application of standard error of prediction 
for establishing a 95% confidence interval for observed scores 
based on an estimated true score of 16.01

±

=

= ±

= −

T

   

   

    

ˆ (1.96)(2.46)

4.82

16.01 4.82

11.19 20.83
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Applying the same example data as in Equations 7.32 and 7.33 to Equation 7.37a 
yields the error estimate in Equation 7.37b.

Next, we can apply the standard error of prediction derived from Equation 7.37c to 
develop a 95% confidence interval.

Interpretation

Using the standard error of prediction, the probability that a person’s true score will fall 
within a confidence interval based on that person’s observed score is illustrated next. 
Again we assume that a person’s true score is 16, the standard deviation of test X is 4.3, and 
the reliability estimate is .82. Next, we assume that this person is repeatedly tested 1,000 
times. Of the 1,000 repeated testing occasions, 950 (95%) would lie within 4.82 points of 
the person’s true score (e.g., between 11.19 and 20.83). Notice that the confidence interval 
is wider in the previous examples. Fifty scores would fall outside of the interval 11.19 to 
20.83. Finally, if a confidence interval was derived for each of the person’s 1,000 observed 
scores, 950 of the intervals would be generated around observed scores between 11.19 
and 20.83 (each interval would contain the person’s true score). It is apparent from the 
previous explanation that 5% of the time the person’s true score would not fall within the 
interval 11.19 to 20.83. However, there is a 95% chance that the confidence interval gener-
ated around the observed score of 16 will contain the person’s true score.

7.21 Summarizing and Reporting Reliability Information

Summarizing and reporting information regarding measurement error is essential to the 
proper use of any instrument. More broadly, any assessment procedure that uses some 
form of instrumentation or measurement protocol for the assessment of knowledge, skill, 
or ability is prone to error. Ideally, the optimal way to evaluate the quality of the reliability 
of scores is to conduct independent replication studies that focus specifically on reli-
ability (AERA, APA, & NCME, 1999; 2014, p. 27). The following points are essential in 
reporting errors of measurement: (1) sociodemographic details about the study group or 
examinee population, (2) sources of error, (3) magnitude of errors, (4) degree of gener-
alizability across alternate or parallel forms of a test, and (5) degree of agreement among 
raters or scorers. Information on the reliability of scores may be reported in terms of one 
or more coefficients (depending on the use of the scores) such as (1) stability—test–
retest, (2) equivalence—alternate forms, and (3) internal consistency—coefficient alpha 
or split-half. When decisions are based on judgment, coefficients of interscorer or rater 
consistency are required.

Errors of measurement and reliability coefficients involving decisions based on 
judgments have many sources. For example, evaluator biases, scoring subjectivity, and 
between-examinee factors are all sources of error. To meet these additional challenges, 
when errors of measurement and reliability are being reported for decisions based on judg-
ments resulting in classifications, generalizability theory (Cronbach et al., 1972) provides 
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a comprehensive (presented next in Chapter 8) framework that allows for many types of 
applied testing scenarios. Reliability information may also be reported in terms of error 
variance or standard deviations of measurement errors. For example, when test scores are 
based on classical test theory, the standard error of measurement should be reported along 
with confidence intervals for score levels. For IRT, information on functions should be 
reported because they provide the magnitude of error across the score range. Also, when a 
test is based on IRT, information on the individual item characteristic functions should be 
reported along with the test characteristic curve. The item characteristic and test functions 
provide essential information regarding the precision of measurement at various ability 
levels of examinees. Item response theory will be covered thoroughly in Chapter 10.

Whenever possible, reporting conditional errors of measurement is also encouraged 
because errors of measurement are not uniform across the score scale and this has implica-
tions for the accuracy of score reporting (AERA, APA, & NCME, 1999, p. 29). For approaches 
to estimating conditional errors of measurement see Kolen, Hanson, and Brennan (1992), 
and for conditional reliability, see Raju, Price, Oshima, and Nering (2007).

When comparing and interpreting reliability information obtained from using a test 
for different groups of persons, consideration should be given to differences in variability 
of the groups. Also, the techniques used to estimate the reliability coefficients should be 
reported along with the sources of error. Importantly, it is essential to present the theo-
retical model by which the errors of measurement and reliability coefficients were derived 
(e.g., classical test theory, IRT, or generalizability theory). This step is critical because 
interpretation of reliability coefficients varies depending on the theoretical model used 
for estimation.

Finally, test score precision should be reported according to the type of scale by 
which they have been derived. For example, raw scores or IRT-based scores may reflect 
different errors of measurement and reliability coefficients than standardized or derived 
scores. This is particularly true at different levels of a person’s ability or achievement. 
Therefore, measurement precision is substantially influenced by the scale in which the 
test scores are reported.

7.22 Summary and Conclusions

Reliability refers to the degree to which scores on tests or other instruments are free from 
errors of measurement. This dictates their level of consistency, repeatability, or reliability. 
Reliability of measurement is a fundamental issue in any research endeavor because some 
form of measurement is used to acquire data—and no measurement process is error free. 
Identifying and properly classifying the type and magnitude of error is essential to esti-
mating the reliability of scores. Estimating the reliability of scores according to the clas-
sical true score model involves certain assumptions about a person’s observed, true, and 
error scores. Reliability studies are conducted to evaluate the degree of error exhibited 
in the scores on a test (or other instrument). Reliability studies involving two separate 
test administrations include the alternate form and test–retest methods or techniques. 
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The internal consistency approaches are based on covariation among or between test 
item responses and involve a single test administration using a single form. The inter-
nal consistency approaches include (1) split-half techniques with the Spearman–Brown 
correction formula, (2) coefficient alpha, (3) the Küder–Richardson 20 formula, (4) the 
Küder–Richardson 21 formula, and (5) the analysis of variance approach. The reliability 
of scores used in the study of change is an issue important to the integrity of longitudinal 
research designs. Accordingly, a formula was presented that provides a way to estimate 
the reliability of change scores.

It is also useful to view how “unreliable” test scores are. The unreliability of scores is 
viewed as a discrepancy between observed scores and true scores and is expressed as the 
error of measurement. Three different approaches to deriving estimates of errors of mea-
surement and associated confidence intervals were presented, along with the interpretation 
of each using example data. The three approaches commonly used are (1) the standard 
error of measurement, (2) the standard error of estimation, and (3) the standard error of 
prediction.

Key Terms and Definitions

Attributes. Identifiable qualities or characteristics represented by either numerical ele-
ments or categorical classifications of objects that can be measured.

Classical test theory. Based on the true score model, a theory concerned with observed, 
true, and error score components.

Classical true score model. A model-based theory of properties of test scores relative to 
populations of persons based on true, observed, and error components. Classical test 
theory is based on this model.

Coefficient alpha. An estimate of internal consistency reliability that is based on item 
variances and covariances and that does not require strictly parallel or true score 
equivalence between its internal components or half tests. The alpha coefficient is the 
mean of all possible randomly split-half tests using Rulon’s formula. In relation to theo-
retical or true score estimates of reliability, alpha produces a lower-bound estimate 
of score reliability.

Coefficient of equivalence. Calculated as the correlation between scores on two admin-
istrations of the same test.

Coefficient of reliability. The ratio of true score variance to observed score variance.

Coefficient of stability. Correlation coefficient between scores on two administrations of 
the same test on different days; calculated using the test–retest method.

Composite score. The sum of responses to individual items where a response to an item 
is a discrete number. 

Confidence interval. A statistical range with a specified probability that a given param-
eter lies within the range.
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Confidence limits. Either of two values that provide the endpoints of a confidence interval.

Congeneric tests. Axiom specifying that a person’s observed, true, and error scores on 
two tests are allowed to differ.

Constant error. Error of measurement that occurs systematically and constantly due to char-
acteristics of the person, the test, or both. In the physical or natural sciences, this type of 
error occurs by an improperly calibrated instrument being used to measure something 
such as temperature. This results in a systematic shift based on a calibration error. 

Deviation score. A raw score subtracted from the mean of a set of scores.

Essential tau-equivalence. Axiom specifying that a person’s observed score random vari-
ables on two tests are allowed to differ but only by the value of the linking constant.

Generalizability theory. A highly flexible technique for studying error that allows for the 
degree to which a particular set of measurements on an examinee are generalizable 
to a more extensive set of measurements.

Guttman’s equation. An equation that provides a derivation of reliability estimation 
equivalent to Rulon’s method that does not necessarily assume equal variances on the 
half-test components. This method does not require the use of the Spearman–Brown 
correction formula.

Heteroscedastic error. A condition in which nonuniform or nonconstant error is exhibited 
in a range of scores.

Internal consistency. Determines whether several items that propose to measure the 
same general construct produce similar scores.

Item homogeneity. Test items composed of similar content as defined by the underlying 
construct.

Küder–Richardson Formula 20 (KR-20). A special case of coefficient alpha that is 
derived when items are measured exclusively on a dichotomous level.

Küder–Richardson Formula 21 (KR-21). A special case of coefficient alpha that is 
derived when items are of equal difficulty.

Measurement precision. How close scores are to one another and the degree of mea-
sure of error on parallel tests. 

Parallel tests. The assumption that when two tests are strictly equal, true score, observed, 
and error scores are the same for every individual.

Random error. Variability of errors of measurement function in a random or nonsystem-
atic manner.

Reliability. The consistency of measurements based on repeated sampling of a sample 
or population.

Reliability coefficient. The squared correlation between observed scores and true scores. 
A numerical statistic or index that summarizes the properties of scores on a test or 
instrument. 

Reliability index. The correlation between observed scores and true scores.
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Rulon’s formula. A split-half approach to reliability estimation that uses difference scores 
between half tests and that does not require equal error variances on the half tests. 
This method does not require the use of the Spearman–Brown correction formula.

Spearman–Brown formula. A method in which tests are correlated and corrected back 
to the total length of a single test to assess the reliability of the overall test.

Split-half reliability. A method of estimation in which two parallel half tests are created, 
and then the Spearman–Brown correction is applied to yield total test reliability.

Standard error of estimation. Used to predict a person’s score on one test (Y) based 
on his or her score on another parallel test (X). Useful for establishing confidence 
intervals for predicted scores.

Standard error of measurement. The accuracy with which a single score for a person 
approximates the expected value of possible scores for the same person. It is the 
weighted average of the errors of measurement for a group of examinees.

Standard error of prediction. Used to predict a person’s true score from his or her 
observed score. Useful for establishing confidence intervals for true scores.

Tau-equivalence. Axiom specifying that a person has equal true scores on parallel forms 
of a test.

True score. Hypothetical entity expressed as the expectation of a person’s observed score 
over repeated independent testing occasions.

True score model. A score expressed as the expectation of a person’s observed score 
over infinitely repeated independent testing occasions. True score is only a hypo-
thetical entity due to the implausibility of actually conducting an infinite number of 
independent testing occasions.

Validity. The degree to which evidence and theory support the interpretations of test 
scores entailed by proposed use of a test or instrument. Evidence of test validity is 
related to reliability, such that reliability is a necessary but not sufficient condition to 
establish the validity of scores on a test. 
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