
“Inference” refers to a reasoning process that begins with some informa-
tion and leads to some conclusion. If you have ever taken a logic course 

or thought about logical reasoning, you have probably heard things like, “All 
mammals are warm- blooded animals; this animal is a mammal; therefore this 
animal is warm- blooded.” That particular sentence is known as a “syllogism” 
and it represents a kind of inference called “deduction.” Another kind of infer-
ence, induction, reasons from specific cases to the more general. If I observe a 
cat jumping from a tree and landing on its feet, and then I observe another cat, 
and another, and another doing the same thing, I might infer that cats gener-
ally land on their feet when jumping out of trees. Statistical inference takes this 
same kind of logical thinking a step further by dealing systematically with situ-
ations where we have uncertain or incomplete information. Unlike the syllo-
gism about warm- blooded animals presented above, conclusions that we draw 
inductively from samples of data are never fixed or firm. We may be able to 
characterize our uncertainty in various ways, but we can never be 100% sure 
of anything when we are using statistical inference. This leads to an important 
idea that you should always keep in mind when reasoning from samples of data:

You cannot prove anything from samples 
or by using statistical inference.

I emphasize this point repeatedly with my students and I expect them to 
know the reason why (by the end of the course if not before). So, if you ever 
hear a journalist or a scientist or anyone else saying that statistical analysis of one 
or more samples of data proves a certain conclusion, you can be assured that he 
or she is mistaken, and perhaps misinformed or being intentionally misleading.

CHAPTER 4

Introducing the Logic of Inference 
Using Confidence Intervals
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Instead of setting out to prove something, we collect data and analyze it 
with inferential statistics in order to build up a weight of evidence that inf lu-
ences our certainty about one conclusion or another. There’s a great historical 
example of this method from the 19th-century medical researcher John Snow. 
Snow (1855) studied outbreaks of cholera in London. Cholera is a devastating 
bacterial infection of the small intestine that still claims many lives around the 
world. John Snow mapped cases of cholera in London and found that many 
cases clustered geographically near certain wells in the city where residents 
drew water for drinking and other needs. Using this purely graphical method, 
Snow was able to infer a connection between the cholera cases, the wells, and 
sewage contamination that led him to conclude that fecal contamination of 
drinking water was the primary mechanism that caused cholera. Blech! His 
map, his evidence, and his reasoning were not a proof—in fact, many authori-
ties disbelieved his proposed mechanism for decades afterward—but Snow’s 
work added substantially to the weight of evidence that eventually led to a 
scientific consensus about cholera infections.

Today we have many more data analysis tools than John Snow did, as well 
as an unrivaled ability to collect large amounts of data, and as a result we are 
able to more carefully quantify our ideas of certainty and confidence surround-
ing our data sets. In fact, while there was one predominant strategy of statistical 
inference used during the 20th century, known as “frequentist statistical infer-
ence,” some new approaches to inference have come into play over recent years. 
We will begin by considering one element of the frequentist perspective in this 
chapter and then add to our knowledge by considering the so-called Bayesian 
perspective in the next chapter.

But now would be a really good point to pause and to look back over 
the previous chapter to make sure you have a clear understanding of the ideas 
around sampling distributions that I introduced there. In the previous chapter 
we began with a randomly generated data set that we used to represent the 
whole population—specifically a whole population of angles at which toast 
struck the ground after being dropped off a plate. It is important to now declare 
that this made-up example was ridiculous on many levels. First of all, I hope 
that there are not many scientists who spend their time worrying about toast-
drop angles.

Most importantly, however, as researchers we almost never have access to the 
totality of the population data. This is a critical conceptual point. Although in 
some special cases it may be possible to access a whole population (think, e.g., 
of the population of Supreme Court justices), in most research situations it is 
impractical for us to reach all of the members of a population. Think about the 
population of humans on earth, or of asteroids in the asteroid belt, or of tablet 
computers deployed in the United States, or of electric utility customers in 
Canada. In each case we can define what we are talking about, and we can have 
criteria that let us know whether a particular person, or tablet, or asteroid is part 
of the population, but we cannot get data on the complete population. It is logistically 
impossible and/or cost-prohibitive to do so. Even in smaller populations—the 
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students enrolled in a college, all of the employees of a company, the complete 
product inventory of one store, a full list of the text messages you have ever 
sent—there may be good, practical reasons why we may not want to measure 
every single member of a population.

That’s why we sample. Drawing a sample is a deliberate act of selecting 
elements or instances such that the collection we obtain can serve as a stand-in 
for the whole population. At its best, a sample is representative of a population, 
where membership in a population can be defined but the elements of the 
population can never be accessed or measured in their totality. As we know 
from our activities in the previous chapter, it is rare to ever draw a sample that 
perfectly mimics the population (i.e., one particular sample that has the exact 
same mean as the population). In this context, the goal of statistical inference is 
to use a sample of data to make estimates and/or inferences about a population, 
with some degree of certainty or confidence. (Note that in those unusual cases 
where we can measure every element of a population, we conduct a census 
of the population and we do not need sampling or inferential thinking at all. 
Whatever we measure about all Supreme Court justices is what it is, within the 
limits of measurement precision.)

Let’s now turn to a real-world example of populations and samples to illus-
trate the possibilities. We will use another built-in data set that R provides 
called “mtcars.” If you type “?mtcars” at the command line, you will learn that 
this is an old (1974!) data set that contains a sample of 32 different vehicles with 
measurements of various characteristics including fuel economy. I’ll bet you are 
happy that I have finally stopped talking about toast! Historical point of trivia: 
cars from the 1974 model year were the last ones that were designed prior to 
the 1970s oil crisis (in most parts of the world gas prices tripled between 1974 
and 1980), so the average fuel economy of these cars is shockingly low. In this 
chapter, we will focus on one simple research question: Do cars with automatic 
transmissions get better or worse mileage than cars with manual transmissions? 
As usual, I provide R code below to show what I am doing. In the sections 
below, however, the most important thing is that you should follow the con-
ceptual arguments.

Here is the situation we are trying to address. The mtcars data set contains 
n = 19 cars with automatic transmissions and n = 13 cars with manual trans-
missions. The n = 19 and n = 13 are independent samples that are standing 
in for the whole population of cars (from model year 1974). The samples are 
independent because they were collected from two distinctive groups of cars (as 
opposed to one group of cars at two different points in time). What we want to 
do is use the sample to infer a plausible difference in mileage between the two 
types of transmissions among all 1974 model year cars. I use the word plausible 
intentionally, as I want to avoid the language of probability until a little later. 
The key thing to keep in mind is that because we are using samples, we can’t 
possibly know exactly what would be true of the populations. But we can think 
about the evidence that we get from the sample data to see if it convinces us that 
a difference may exist between the respective populations (i.e., the population 
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of automatic cars and the population of manual cars). We will assume for the 
purposes of this example that the people involved in collecting the mtcars data 
did a good job at obtaining random samples of cars to include in the data set.

Of additional importance, we can use the statistics to give us some infor-
mation about how far apart the fuel economy is between the two types of trans-
missions. We might have wanted to know this information to make a judgment 
as to which type of transmission to buy: automatics are more convenient and 
may be safer, but manuals might get better fuel economy and some people think 
they are more fun to drive. If the statistics told us that there was a big difference 
in fuel economy, we would have to weigh that against purchase and operating 
costs as well as convenience, safety, and fun. On the other hand, if the statistics 
told us that there was only a very small economy difference or possibly no dif-
ference between the two types of transmission, then we could make our deci-
sion based on other criteria.

Let’s begin with some exploration of the mtcars data set, including a new 
visualization called a box plot. Run these commands:

mean( mtcars$mpg[ mtcars$am == 0 ] )		  # Automatic transmissions
mean( mtcars$mpg[ mtcars$am == 1 ] )		  # Manual transmissions

The mean miles per gallon (mpg) for the automatic transmission cars was 
17.1, while the mean mpg for manual transmission cars was 24.3, a substantial 
difference of about 7.2 miles per gallon. Note that we have stepped up our 
game here with respect to R syntax. We are using the $ subsetting mechanism 
to access the mpg variable in the mtcars data set: that’s what “mtcars$mpg” 
does. But we are also doing another kind of subsetting at the same time. The 
expressions inside the square brackets, [mtcars$am == 0] and [mtcars$am == 
1] select subsets of the cases in the data set using logical expressions. The two 
equals signs together makes a logical test of equality, so for the first line of code 
we get every case in the mtcars data frame where it is true that mtcars$am is 
equal to 0 (0 is the code for automatic transmission; you can verify this by 
examining the help file you get when you type ?mtcars). For the second line of 
code we get every case where it is true that mtcars$am is equal to one (one is 
the code for manual transmission).

Now if you have not yet put on your brain-enhancing headgear, you might 
believe that the calculated difference in means is sufficient evidence to conclude 
that manual transmissions are better, as the mean for manual transmission cars 
is more than 7 mpg higher than for automatic transmission cars. Remember the 
previous chapter, however, and keep in mind how often we drew samples that 
were a fair bit different from the population mean. Each of these two sample 
means is uncertain: each mean is what statisticians refer to as a point estimate, 
with the emphasis on the word “estimate.” Each sample mean is an estimate 
of the underlying population mean, but right now we are not quite sure how 
good an estimate it is. One of the key goals of inferential statistics is to put some 
boundaries around that level of uncertainty.
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We can begin to understand that uncertainty by examining the variability 
within each of the groups. All else being equal, a sample with high variability 
makes us less certain about the true population mean than a sample with low 
variability. So as part of our routine process of understanding a data set, let’s 
examine the standard deviations of each of the transmission groups:

sd( mtcars$mpg[ mtcars$am == 0 ] )		  # Automatic transmissions
sd( mtcars$mpg[ mtcars$am == 1 ] )		  # Manual transmissions

These commands reveal that the standard deviation for automatic trans-
missions cars is 3.8 miles per gallon, while the standard deviation for manual 
transmissions is quite a bit higher at 6.1 miles per gallon. Are these standard 
deviation values unexpected, very large, very small, or just what the doctor 
ordered? We really don’t know yet, and in fact it is a little tricky to judge just 
on the basis of seeing the two means and the two standard deviations. We might 
get a better feel for the comparison between these two groups with a visualiza-
tion that allows us to graphically compare distributions and variability. That’s 
where the box plot comes in:

boxplot(mpg ~ am, data=mtcars)		  # Boxplot of mpg, grouped by am

This command introduces another little piece of R syntax, called “formula 
notation.” The expression “mpg ~ am” tells R to use mpg as the dependent 
variable (the variable that gets plotted on the Y-axis) and to group the results by 
the contents of “am.” The second piece, “data=mtcars,” simply tells R where 
to find the data that goes with the formula. Lots of analysis commands in R use 
the formula notation, and we will expand our knowledge of it later in the book. 
For now, take a look at the box plot that appears in Figure 4.1.

The box plot, sometimes also called a “box-and-whiskers plot,” packs a 
lot of information into a small space. Figure 4.1 shows boxes and whiskers for 
the two groups of cars—automatic and manual—side-by-side. In each case the 
upper and lower boundaries of the box represent the first and third quartiles, 
respectively. So 25% of all the cases are above the box and 25% are below the 
box. The dark band in the middle of the box represents the median. You can 
see clearly that in the case of manual transmissions, the median is quite close to 
the first quartile, indicating that 25% of cases are clustering in that small region 
between about 21 and 23 miles per gallon. In this box plot the whiskers repre-
sent the position of the maximum and minimum values, respectively. In some 
other box plots these whiskers may represent the lowest or highest “extreme” 
value, with a few additional outliers marked beyond the whiskers. Other box 
plots may also notate the mean, sometimes with a dot or a plus sign.

Figure 4.1 gives us a good visual feel for the differences between the two 
groups. The boxes for the two groups do not overlap at all, a very intuitive and 
informal indication that there may be a meaningful difference between these 
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two groups. In comparing the heights of the boxes, we also see a ref lection 
of what we learned before from the standard deviations: the automatic trans-
mission cars are considerably less variable than the manual transmission cars. 
Finally, the whiskers show that the very lowest value for manual transmissions 
falls at the first quartile for the automatic transmissions, further reaffirming the 
differences between these groups.

But we are still cautious, because we know that samples can f luctuate all 
over the place, and we can’t be certain that the differences between these two 
groups can be trusted. So now let’s do something clever: we can use the resam-
pling and replication techniques we developed in the previous chapter to create 
a simulation.

EXPLORING THE VARIABILITY OF SAMPLE MEANS 
WITH REPETITIOUS SAMPLING

This simulation will show, in an informal way, the amount of uncertainty 
involved in these two samples. Let’s try to visualize those boundaries using 
some of the tricks we learned in the previous chapter. First, we will have a little 
fun by sampling from our samples:

  FIGURE 4.1.    Box plot of mpg by transmission type from the mtcars data 
set.
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mean( sample(mtcars$mpg[ mtcars$am == 0 ],size=19,replace=TRUE) )
mean( sample(mtcars$mpg[ mtcars$am == 1 ],size=13,replace=TRUE) )

These functions should be familiar to you now: We are drawing a sample 
of n = 19 from the automatic transmission group, with replacement. Likewise, 
we are drawing a sample of n = 13 from the manual transmission group. I got 
16.8 mpg for automatic and 28.4 mpg for manual, but your mileage will vary 
(ha ha!) because of the randomness in the sample() command. It may seem kind 
of goofy to “resample” from a sample, but bear with me: we are building up 
toward creating a histogram that will give us a graphical feel for the uncertainty 
that arises from sampling. Each of the sample mean differences will be close 
to, but probably not exactly equal to, the mean difference that we observed 
between the two original samples. Now, let’s calculate the difference between 
those two means, which is, after all, what we are most interested in:

mean(sample(mtcars$mpg[mtcars$am == 0],size=19,replace=TRUE)) – 
mean(sample( mtcars$mpg[mtcars$am == 1],size=13,replace=TRUE) )

If you are typing that code, put the whole thing on one line and make sure to 
type the minus sign in between the two pieces. Keep in mind that we are usu-
ally looking at negative numbers here, because we are expecting that manual 
transmission mileage will on average be higher than automatic transmission 
mileage. Now let’s take that same command and replicate it one hundred times:

meanDiffs <- replicate(100, mean( sample(mtcars$mpg[ mtcars$am == 0 ], 
size=19,replace=TRUE) ) - mean( sample(mtcars$mpg[ mtcars$am ==  
1 ], size=13,replace=TRUE) ))

Now plot a histogram of that sampling distribution of mean differences:

hist(meanDiffs)

The first statement above uses replicate() to run the same chunk of code 100 
times, each time getting one sample mean from the automatic group and one 
sample mean from the manual group and subtracting the latter from the former. 
We store the list of 100 sample mean differences in a new vector called mean-
Diff and then request a histogram of it. The result appears in Figure 4.2.

Let’s make sense out of this histogram. The code says that whenever we 
draw a sample of automatic transmission cars, we calculate a mean for it. Then 
we draw a sample of manual transmission data and calculate a mean for it. Then 
we subtract the manual mean from the automatic mean to create a mean dif-
ference between two samples. Every time we do this we end up with a slightly 
different result because of the randomness of random sampling (as accomplished 
by the sample() command). We append each mean difference onto a vector 
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of mean differences. As the histogram shows, in a lot of cases the difference 
between the two means is right around –7, as you would expect from look-
ing at the two original samples. But we can also see that on occasion manual 
transmission samples are better by as much as 13 miles per gallon (the left end 
of the X-axis), while in other cases manual transmissions are only better by 
1 mile per gallon (the right end of the X-axis). Note that if you run this code 
yourself, your results may be slightly different because of the inherent random-
ness involved in sampling.

You can think of this informally as what might have happened if we 
had replicated our study of transmissions and fuel economy 100 times. Based 
solely on the simulation represented by this histogram, we might feel com-
fortable saying this: manual transmissions may provide better fuel economy 
than automatic transmissions with a difference of about 7 miles per gallon, 
but that could on rare occasions be as little as 1 mile per gallon or as much as 
13 miles per gallon. The width of the span between –1 and –13 is one very 
concrete representation of our uncertainty. Further, one might say that we 
have a certain amount of confidence that we do have a real difference between 
the two kinds of transmissions. I love that word “confidence.” We are using it 

  FIGURE 4.2.   Histogram of mean differences between automatic transmis-
sion cars and manual transmission cars.
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to signify that there is a span of different possibilities and although we know 
roughly how wide that span is, we don’t know where exactly the truth lies 
within that span.

If we really wanted to follow the methods described in Chapter 3, we 
could go one step further by calculating quantiles for our distribution of mean 
differences. The following command provides the values for the 0.025 and 
0.975 quantiles: this divides up the distribution of simulated sampling means 
into 95% in the center and 5% in the tails.

quantile(meanDiffs, c(0.025, 0.975))

For my simulated distribution of 100 mean differences, I got –10.8 on the 
low end and –3.1 on the high end. So we could now update our previous infor-
mal statement of uncertainty to become slightly more specific: manual trans-
missions may provide better fuel economy than automatic transmissions with a 
difference of about 7 mpg, but for 95% of the simulated mean differences that 
could be as much as 10.8 mpg or as little as 3.1 mpg. The width of this span, 
about plus or minus 4 mpg, is a representation of our uncertainty, showing 
what might happen in about 95 out of 100 trials if we repeatedly sampled fuel 
economy data for cars with the two types of transmissions.

OUR FIRST INFERENTIAL TEST: 
THE CONFIDENCE INTERVAL

Now we are ready to perform our very first official inferential test:

t.test(mtcars$mpg[mtcars$am==0] ,mtcars$mpg[mtcars$am==1])

That command produces the following output:

		  Welch Two Sample t-test
data: mtcars$mpg[mtcars$am == 0] and mtcars$mpg[mtcars$am == 1]
t = -3.7671, df = 18.332, p-value = 0.001374
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-11.280194 -3.209684
sample estimates:
mean of x mean of y
17.14737 24.39231

The t.test() function above invokes the single most popular and basic form 
of inferential test in the world, called the “Student’s t-Test.” If you go all the 
way back to the introduction to this book, you will remember that “Student” 
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was William Sealy Gosset (1876–1937), the Guinness Brewery scientist. Gosset 
developed this “independent groups” t-test in order to generalize to a popula-
tion of mean differences using sample data from two independent groups of 
observations. The output on page 60 is designated the “Welch Two Sample 
t-test” because the 20th- century statistician Bernard Lewis Welch (1911–1989) 
developed an adaptation of Gosset’s original work that made the test more capa-
ble with different kinds of “unruly” data (more specifically, situations where 

Formulas for the Confidence Interval

I promised to postpone a deeper discussion of the meaning of t until the next chap-
ter, but now is the right moment to show you the formulas for the confidence inter-
val for the difference between two independent means:

Confidence interval: ( )= − − +
2 2

* 1 2
1 2

1 2

Lower bound  
s s

x x t
n n

  ( )= − + +
2 2

* 1 2
1 2

1 2

Upper bound  
s s

x x t
n n

You’ll notice that the top and bottom equations only have one difference 
between them: the top equation has a minus sign between the first and second part 
and the bottom equation has a plus sign. The first half of each equation, a subtrac-
tion between two “x-bars,” is simply the observed difference in sample means. In 
our mtcars example, that difference was 17.14 – 24.39 = –7.2. The second part of the 
equation calculates the width of the confidence interval, in the top case subtracting 
it from the mean difference and in the bottom case adding it.

The width of the confidence interval starts with t*—this is a so- called critical 
value from the t-distribution. I won’t lay the details on you until the next chapter, 
but this critical value is calculated based on the sample sizes of the two samples. The 
important thing to note is that the critical value of t will differ based on both sample 
size and the selected confidence level. We have used a “95% confidence interval” 
throughout this chapter, but it is also possible to use 99% or on occasion other values 
as well.

All of the stuff under the square root symbol is a combination of the variability 
information from each of the samples: technically a quantity called the standard 
error. Sounds complicated, but it is really nothing more than the standard deviation 
of the sampling distribution of means (or in this case, mean differences). In each case 
we square the standard deviation to get the variance and then divide the variance 
by the sample size. Once we have added together the two pieces, we square root the 
result to get the standard error.
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the two groups have different levels of variability; Welch, 1947). We are going 
to postpone a detailed consideration of what “t” actually means until the next 
chapter. So for now, the key piece of output to examine above is the 95 percent 
confidence interval. The t-test procedure has used these two samples to cal-
culate a confidence interval ranging from a mean difference of –11.3 miles per 
gallon to –3.2 miles per gallon. That range should seem familiar: it is darned 
close to what our little resampling simulation produced! In fact, there is some 
conceptual similarity to what we did in our informal simulation and the mean-
ing of a confidence interval.

In our simulation we sampled from the existing sample, because we had no 
way of sampling new data from the population. But statisticians have figured 
out what would happen if we could have sampled new data from the popula-
tion. Specifically, if we reran our whole study of transmissions and fuel economy many 
times—sampling from the population and taking means of both a new group of 
automatic transmission cars and a new group of manual transmission cars—and 
each time we constructed a new confidence interval, in 95% of those replica-
tions the confidence interval would contain the true population mean difference. In 
the previous sentence the phrase “would contain” signifies that the true popu-
lation mean difference would fall somewhere in between the low boundary of 
the confidence interval and the high boundary. Based on this definition it is 
really, extremely, super important to note that this particular confidence interval 
(the one that came out of our t-test above) does not necessarily contain the true 
population value of the mean difference. Likewise, the 95% is not a statement 
about the probability that this particular confidence interval is correct. Instead, the 
95% is a long-run prediction about what would happen if we replicated the 
study—sampling again and again from the populations—and in each case cal-
culated new confidence intervals.

This is definitely a major brain stretcher, so here’s a scenario to help you 
think about it. You know how in soccer, the goal posts are fixed but the player 
kicks the ball differently each time? Now completely reverse that idea in your 
mind: pretend that the player does the same kick every time, but you get the 
job of moving the goal posts to different locations. In fact, let’s say you get 100 
tries at moving the goal posts around. A 95% confidence interval indicates that 
95 out of 100 times, you moved the goal posts to a spot where the mystery kick 
went right through. The player always does the same kick: that is the unseen 
and mysterious population mean value that we can never exactly know. Each 
of the 100 times that you move the goal posts represents a new experiment and 
a new sample where the two posts are the two edges of the confidence interval 
calculated from that sample. You can create a nifty animation in R that helps 
to demonstrate this idea with the following code:

install.packages(“animation”)
library(animation)
conf.int(level=0.95)
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The animation creates 50 different confidence intervals around a popula-
tion mean of 0 by repeatedly sampling from the normal distribution. The dot-
ted line in the middle of the graph shows where the population mean lies. Each 
constructed confidence interval looks like a tall capital letter “I.” The circle in 
the middle of the “I” shows where the mean of each sample falls. In a few cases, 
the confidence interval will not overlap the population mean: these are marked 
in red. Most of the time these “goal posts” overlap the population mean, but in 
about 5% of the cases they do not. If for any reason this code did not work for 
you in R, try to search online for “confidence interval simulation” and you will 
find many animations you can view in a browser.

Now back to the mtcars transmission data: remember that when we say 
“95% confidence interval,” we are referring to the proportion of constructed 
confidence intervals that would likely contain the true population value. So 
if we ran our transmission and fuel economy study 100 times, in about 95 of 
those replications the samples of transmission data would lead to the calcu-
lation of a confidence interval that overlapped the true mean difference in 
mpg. As well, about five of those 100 replications would give us a confidence 
interval that was either too high or too low—both ends of the confidence 
interval would either be above or below the population mean ( just like the 
red-colored intervals in the animation described above). And for the typical 
situation where we only get the chance to do one study and draw one sample, 
we will never know if our particular confidence interval is one of the 95 or 
one of the five.

From the t-test, the span of –11.3 up to –3.2 is what statisticians call an 
interval estimate of the population value. The fact that it is a range of values 
and not just a single value helps to represent uncertainty: we do not know and 
can never know exactly what the population value is. The width of the confi-
dence interval is important! A wide interval would suggest that there is quite a 
large span where the population mean difference may lie: in such cases we have 
high uncertainty about the population value. A narrow interval would signify 
that we have a pretty sharp idea of where the population mean difference is 
located: low uncertainty. We would want to keep that uncertainty in mind as 
we think about which kind of automobile transmission to choose, based on our 
preferences about fuel economy as well as other criteria such as cost.

Finally, I want to emphasize again the importance of the idea that the 
observed confidence interval does not tell us where the true population mean 
difference lies. The population mean difference does not lie at the center point of 
the confidence interval. The confidence interval we calculate from our sample 
of data may, in fact, not even contain the actual population mean difference. In 
keeping with our consideration of inferential thinking, the confidence interval 
adds to the weight of evidence about our beliefs. The span of –11.3 up to –3.2 
strengthens the weight of evidence that the population difference in fuel econ-
omy between automatic and manual transmissions is a negative number some-
where in the region of –7.2 mpg plus or minus about 4 mpg. The confidence 
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interval does not prove that there is a difference in fuel economy between the 
two types of transmissions, but it does suggest that possibility, and it gives us a 
sense of the uncertainty of that conclusion (the plus or minus 4 mpg represents 
the uncertainty).

CONCLUSION

We began this chapter by constructing our own informal simulation model of 
a sampling distribution of mean differences by extrapolating from two samples 
of data about the fuel economy of 1974 cars. This was only an informal model 
because we did not have access to the complete populations of car data, but 
the simulation did give us the chance to put the idea of the uncertainty into a 
graphical context.

We then conducted a t-test, which calculated a confidence interval based 
upon the two samples of car data. The confidence interval suggested that man-
ual transmissions from the 1974 model year might be more efficient than auto-
matic transmissions, by somewhere in the neighborhood of 7 mpg. The interval 
estimate of the population mean difference ranged from –11.3 up to –3.2, a span 
of about 8 mpg with the observed mean difference between the samples –7.2, 
right in the center of that range. The width of the confidence interval, that 
is, the plus or minus 4 from the center point of –7.2, was an indication of our 
uncertainty. If the interval had been wider we would have been less certain. If 
the interval had been narrower, we would have been more certain.

Throughout this process, we firmly held in mind the idea that the mean-
ing of a 95% confidence interval is that in 95 out of 100 study replications, we 
would be likely to find that whatever confidence interval we constructed in a 
given study did contain the actual population value—in this case a mean dif-
ference in fuel economy between two types of cars. Similar to the concepts we 
explored in the previous chapter, this is a statement about probabilities over the 
long run and not a statement about the particular confidence interval we con-
structed from this specific data set. This particular confidence interval may or 
may not contain the true population value: we will never know for sure.
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EXERCISES

  1.	 In your own words, write a definition of a 95% confidence interval.

  2.	 Answer the following true/false questions about confidence intervals: (a) The center 
of the confidence interval is the population value; (b) The confidence interval always 
contains the population value; (c) A wider confidence interval is better, because it 
signals more certainty; (d) When we say “95% confidence interval,” what we mean is 
that we are 95% certain that this particular confidence interval contains the population 
value.

  3.	 Run the code shown in this chapter that created the animation of confidence intervals:

install.packages(“animation”)
library(animation)
conf.int(level=0.95)

	 Once the animation has finished running, comment on your results. Pay particular 
attention to the number of times that the confidence interval did not contain the popu‑
lation mean value (0). You may have gotten a different answer from other people who 
completed this exercise. Explain why this is so in your own words.

  4.	 Some doctors conducted clinical trials on each of two new pain relievers. In the first 
trial, Drug A was compared to a placebo. In the second trial, Drug B was also com‑
pared to a placebo. In both trials, patients rated their pain relief such that a more 
negative number, such as –10, signified better pain relief than a less negative number, 
such as –5. As you may have already guessed, a rating of 0 meant that the patient’s 
pain did not change, and a positive rating meant that pain actually increased after 
taking the drug (yikes!). After running the trials, the doctors calculated confidence 
intervals. Drug A had a confidence interval from –10 to –2 (these are mean differences 
from the placebo condition). Drug B had a confidence interval from –4 to +2 (again, 
mean differences from the placebo condition). Which drug is better at providing pain 
relief and why? Which drug gives us more certainty about the result and how do you 
know?

  5.	 Assume the same conditions as for the previous question, but consider two new 
drugs, X and Y. When comparing Drug X to placebo, the confidence interval was 
–15 to +5. When comparing Drug Y to placebo, the confidence interval was –7 to –3. 
Which drug is better at providing pain relief and why? Which drug gives us more cer‑
tainty about the result and how do you know?

  6.	 Use the set.seed() command with the value of 5 to control randomization, and then 
calculate a confidence interval using the rnorm() command to generate two samples, 
like this:

set.seed(5)
t.test(rnorm(20,mean=100,sd=10),rnorm(20,mean=100,sd=10))

	 The set.seed() function controls the sequencing of random numbers in R to help 
with the reproducibility of code that contains random elements. Review and interpret 
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the confidence interval output from that t.test() command. Keep in mind that the two 
rnorm() commands that generated the data were identical and therefore each lead to 
the creation of a sample representing a population with a mean of 100. Explain in your 
own words why the resulting confidence interval is or is not surprising.

  7.	 The built-in PlantGrowth data set contains three different groups, each representing 
a different plant food diet (you may need to type data(PlantGrowth) to activate it). The 
group labeled “ctrl” is the control group, while the other two groups are each a dif‑
ferent type of experimental treatment. Run the summary() command on PlantGrowth 
and explain the output. Create a histogram of the ctrl group. As a hint about R syntax, 
here is one way that you can access the ctrl group data:

PlantGrowth$weight[PlantGrowth$group==”ctrl”]

	 Also create histograms of the trt1 and trt2 groups. What can you say about the differ‑
ences in the groups by looking at the histograms?

  8.	 Create a boxplot of the plant growth data, using the model “weight ~ group.” What 
can you say about the differences in the groups by looking at the boxplots for the dif‑
ferent groups?

  9.	 Run a t-test to compare the means of ctrl and trt1 in the PlantGrowth data. Report and 
interpret the confidence interval. Make sure to include a carefully worded statement 
about what the confidence interval implies with respect to the population mean differ‑
ence between the ctrl and trt1 groups.

10.	 Run a t-test to compare the means of ctrl and trt2 in the PlantGrowth data. Report and 
interpret the confidence interval.
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