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CHAPTER 8

The Dependent-Sample t-Test

Introduction
In the last chapter, we saw that when we have one independent variable with two 
levels that are independent of one another, we used the independent-sample t-test. 
What happens, however, when the levels of the independent variable represent two 
different measurements of the same thing? For example, imagine comparing pretest 
and posttest scores for one group of students. If we did, we would have two mea-
surements of the same group. The independent variable would be “Student Test 
Scores” and there would be two levels, “Pretest Scores” and “Posttest Scores.” In 
this case, a given student’s posttest score would be directly related to his or her 
pretest score. Because of that, we would say the levels are dependent upon, or influ-
ence, one another.

As another example, suppose we are interested in determining if a particular drug 
has an effect on blood pressure. We would measure a person’s blood pressure prior 
to the study, have the patient take medicine for a period of time, and then measure 
the blood pressure again. In this case, for a given set of measurements, the “Before 
Blood Pressure” and the “After Blood Pressure” are the two levels of the independent 
variable “Blood Pressure.” Again, these two levels are related to one another, so we 
would use the dependent-sample t-test (sometimes called the paired-samples t-test) 
to check for significant differences.

That’s Great, but How Do We Test Our Hypotheses?

Just like in the prior chapter, here we have an independent variable with two levels 
and one dependent variable where we have collected quantitative data. Given that, 
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you might be asking, “Why not just use the independent-sample t-test?” While that is 
a logical question, unfortunately, we cannot do that. As we’ll soon see, the relation-
ship between the levels of the independent variable creates a problem if we try to do 
it that way.

Independence versus Dependence

When we talked about the independent-sample t-test, the key word was “indepen-
dent”; scores from one group did not influence scores in the second group. That is not 
the case when we have two related groups; let’s use an example to help us understand 
what we are getting at.

Using the idea of pretests and posttests we alluded to earlier, let’s use the data in 
Table 8.1 to help us better understand where we are going with this idea.

TABLE 8.1.  Student Test Data
Student Pretest Posttest

1 52 89

2 48 77

3 51 81

4 45 69

5 50 80

6 60 90

Average 51 81

In this case, the key to understanding what is meant by dependence is based on 
two things. First, obviously each individual pretest score was made by one given stu-
dent. Given that, when a student takes the posttest, his score will be “related” to his 
pretest score. Second, the fact that two sets of scores were collected from one set of stu-
dents makes them “dependent” on each other; the posttest score should generally be 
higher than the pretest score for a given student. This might sound somewhat confus-
ing, but we will see more examples that make this concept very clear. The bottom line, 
for now, is that we have two levels: student pretest scores and student posttest scores.

Computing the t Value for a Dependent-Sample t-Test
Because of the relationship between the two levels of the independent variable, we 
cannot compute the t value using the same formula as the independent-sample t-test; 
if we did, we would dramatically increase the probability of making a Type I error (i.e., 
rejecting the null hypothesis when we should not). In order to avoid that, we have a 
different formula to compute the t value:
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Testing a One-Tailed “Greater Than” Hypothesis
To help understand this formula, let’s look at my wife’s job. She’s a media specialist 
and firmly believes that it doesn’t matter what children read (obviously within limits); 
it is getting them to read anything that makes them better readers.

In order to test her theory, she could start by asking her students to tell her how 
many hours each week they spend reading outside of school. She could then introduce 
them to the Harry Potter series, books that appeal to children at that age level. After a 
few weeks she would again ask the children how many hours they read per week. Obvi-
ously, she hopes the second number is greater than the first. Her research hypothesis 
would be:

	� The average number of hours spent reading per week will be significantly 
greater after allowing students to read books that appeal to them.

In Table 8.2, we have data for five students with the number of hours weekly 
they read before the new books were introduced, as well as the number of books they 
read after the new books were introduced. In order to compute the t value, we need 
to include two extra columns to create Table 8.3. The first new column, labeled D, 
shows us the difference between the Before and After scores. The second new column, 
labeled D2, shows the squared value of D. At the bottom of each of those columns, you 
can see we have summed these values.

TABLE 8.2.  Number of Books Read
Student Before After

1 4 6

2 4 6

3 6 6

4 7 9

5 8 12

Average 5.8 7.8

TABLE 8.3.  Computing the Difference Values for Books Read
Student Before After D D2

1 4   6 +2   4

2 4   6 +2   4

3 6   6 0   0

4 7   9 +2   4

5 8 12 +4 16

Average 5.8 7.8 SD = 10 SD2 = 28

Looking back at the equation, you can see the first value we need to compute is 
D, the average of the difference between scores in each dataset. We can see the sum 
of the differences (i.e., ∑D2) is 10; to compute the average, we need to divide that by 
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5, the number of values in our dataset. This leaves us with an average of 2; we can put 
that into our formula before moving on to the next step.
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We can now deal with the denominator of the equation. Again, let’s go through 
step by step. First, in the third column of our table we have calculated the difference 
between both values and summed them (i.e., 10). In the rightmost column, we have 
taken each of the difference values and squared it. Adding these values gives us the 
sum of the differences squared (i.e., ∑D2). We can insert these values, along with n 
(i.e., 5) into the equation. We can finish computing the equation using the following 
steps.

1.	

( )

t =
 − 
 −  

2

100
28

5
1n n

2.	

( )

t =
 − 
 −  

2

100
28

5
1n n

3.	

( )

2

28 20
5 5 1

t =
 −
 − 

4.	 2

8
20

t =
 
  

5.	
( )
2

.4
t =

6.	 2
.6325
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7.	t = 3.16

This leaves us with a computed t value of 3.16. Before we can test the hypothesis, 
we must determine the critical value of t from the same table we used with the inde-

Cop
yri

gh
t ©

 20
21

 The
 G

uil
for

d P
res

s



	 The Dependent-Sample t-Test  |  221

pendent-sample t-test. This time, however, we will compute our degrees of freedom 
by subtracting one from the total pairs of data; when we subtract 1 from 5, we are left 
with 4 degrees of freedom. Using the traditional alpha value of .05, we would refer to 
our table and find that the critical value of t is 2.132.

We can then plot that on our t distribution shown in Figure 8.1; remember, we 
have a one-tailed hypothesis, so the entire t value goes on one end. Here our com-
puted value of t is greater than our critical value of t. Obviously we have rejected the 
null hypothesis and supported my wife’s research hypothesis: children do read more 
when they are interested in what they are reading. 

In order to check our work using 
SPSS, we need to set up our spread-
sheet, shown in Figure 8.2, to include 
two variables, Before and After; we 
would then include the data for each. 
Following that, in Figure 8.3, we select 
Analyze, Compare Means, and Paired 
Samples T Test. As shown in Figure 8.4, 
we would then identify the pairs of data 
we want to compare and click on OK. 
SPSS would first provide us with Figure 
8.5; it verifies what we computed earlier 
in Table 8.3.

As we can see in Figure 8.6, the t value of 3.16 is exactly what we computed earlier, 
and our p value is less than .05. This means we can support the research hypothesis; 
kids reading books they enjoy actually did spend significantly more time reading per 
week than they did when they had no choice in their reading material. What is the 
bottom line? My wife is happy!

FIGURE 8.1.  Comparing the computed and criti-
cal values of t.

FIGURE 8.2.  Before and after data in the Data View spreadsheet.
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The Effect Size for a Dependent-Sample t-Test
Just as was the case with the independent-sample t-test, we can compute an effect size 
for the dependent-sample t-test. Interpreting it is the same as in our earlier example, 
but the formula is a lot easier to compute; all you do is divide the average mean differ-
ence by the standard deviation of the difference.

	
difference

differencex
d

s
=

FIGURE 8.3.  Using the Compare Means and Paired-Samples T Test command.

FIGURE 8.4.  Creating the pairs of data to be analyzed using the Paired-Samples T Test.
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Using the values from above and the following two steps, we can compute an 
effect size of 1.42:

1.	 = 2
1.41

d

2.	d = 1.42

According to Cohen’s standards, this is very large and indicates that the treatment 
had quite an effect on the dependent variable. Just as we did in the preceding chapter, 
we will always include the effect size as part of our descriptive statistics.

Testing a One-Tailed “Less Than” Hypothesis
We have seen how well this works with a “greater than” one-tailed hypothesis; now let’s 
look at an example where we are hypothesizing that one average will be significantly 
less than another. Let’s suppose we are working with a track coach at our local high 
school who is trying to improve his team’s times in the 400-meter run. The coach has 
heard that a diet high in protein leads to more muscle mass and figures this should 
contribute to his athletes running faster. He decides to test the new diet for 6 weeks 
and measure the results:

 Mean N Std. Deviation Std. Error Mean 

Before 5.8000 5 1.78885 .80000 Pair 1 

After 7.8000 5 2.68328 1.20000 

FIGURE 8.5.  Descriptive statistics from the Paired-Samples test.

Paired Samples Test 

Pair 1  
After - Before 

Mean 2.00000 

Std. Deviation 1.41421 

Std. Error Mean .63246 

Lower .24402 

Paired Differences 

95% Confidence Interval of 

the Difference Upper 3.75598 

T 3.162 

Df 4 

Sig. (2-tailed) .034 

FIGURE 8.6.  Inferential statistics from the Paired-Samples test.
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	� A track athlete’s time in the 400-meter run will be significantly less after 
following a high-protein diet for 6 weeks.

During the diet regimen, the coach collected data shown in Table 8.4; each of the 
times is measured in seconds.

TABLE 8.4.  Race Time Data
Athlete Before After

Al 105   98

Brandon 110 105

Charlie 107 100

De’Andre 112 107

Eduardo 101   91

Frank 108 103

Just by looking, it seems that the “after” scores are lower, but let’s go ahead and 
compute our t value. First, since we are looking at a one-tailed “less than” hypothesis, 
we need to subtract the “Before” from the “After” value. This can be seen in Table 8.5.

TABLE 8.5.  Computing the Difference Values for Race Times
Athlete Before After D D2

Al 105   98   –7   49

Brandon 110 105   –5   25

Charlie 107 100   –7   49

De’Andre 112 107   –5   25

Eduardo 101   91 –10 100

Frank 108 103   –5   25

Sum SD2 = 39 SD2 = 273

To compute x , we are again going to divide the sum of the differences (–39) by 
the number of values in the dataset (6); this gives us an average difference of –6.5. 
Let’s go ahead and enter that into our equation:

	

( )

−=
 

− 
 

− 
  

∑∑
2

2

6.5

( )

1

t
D

D
n

n n

 

We continue by inserting the sum of the differences squared (i.e., 273), the sum 
of the differences (i.e., –39), and n (i.e., 6), into our equation:
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If we simplify that, we come up with the following formulas:

1.	 6.5

1521
273

6
30

t
−=

 − 
 
  

2.	 6.5

19.5
30

t
−=
 
  

3.	 −
=

6.5
.065

t  

4.	 −
=

6.5
.806

t

5.	t = –8.06

We can now help the coach test his hypothesis. First, using our alpha value of 
.05 and our degrees of freedom of 5, we find that we have a critical t value of 2.015. 
In order to plot this, keep in mind that we have a one-tailed hypothesis, so the entire 
critical t value goes on one end of the distribution as shown in Figure 8.7. In this case, 
since we have a one-tailed “less than” hypothesis, it needs to go on the left tail of the 
distribution. Since our computed value of t is also negative, it needs to go on the left 
side of the distribution as well.

We can clearly see our computed 
value of t of –8.06 is far less than our 
critical value of t; this means we must 
reject the null hypothesis. It appears 
that athletes really do run faster if they 
follow a high-protein diet.

In Figures 8.8 and 8.9, we can con-
firm what we have done using SPSS. We 
are further assured of our decision since 
the p value of .000 is less than our alpha 
value; we can also compute an effect size 
by dividing the mean difference of our 
scores by the standard deviation.

FIGURE 8.7.  Using the computed and critical 
values of t to test the hypothesis.
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−

=
6.5

1.97
d

This yields an effect size of –3.30, but as we did with the independent-sample 
t-test, we must drop the negative sign and use the absolute value. When we do, we see 
that our effect size means our intervention had a definite effect on our dependent 
variable.

Testing a Two-Tailed Hypothesis

In order to help us thoroughly understand what we are doing, let’s consider a case 
where we have a two-tailed hypothesis. In this case, we are investigating a drug 
designed to stop migraine headaches. While we have every indication that it should 
work, we have discovered that the drug may negatively affect a person’s systolic (i.e., 
the upper number) blood pressure. In some instances, the drug might cause the per-
son’s blood pressure to rise; in other cases, it might drop significantly.

Let’s create a dataset by taking a patient’s blood pressure at the start of our study, 
administer the migraine drug for 2 weeks and then measure the blood pressure again. 
After we have completed our study, we wind up with the data in Table 8.6; notice that 
I’ve already computed the difference and the squared difference for you.

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Before the Diet 107.1667 6 3.86868 1.57938 Pair 1 

After the Diet 100.6667 6 5.75036 2.34758 

FIGURE 8.8.  Descriptive statistics from the Paired-Samples test.

Paired Samples Test 

Pair 1 
 After the Diet - 

Before the Diet 

Mean -6.50000 

Std. Deviation 1.97484 

Std. Error Mean .80623 

Lower -8.57247 

Paired Differences 

95% Confidence Interval of 

the Difference Upper -4.42753 

T -8.062 

Df 5 

Sig. (2-tailed) .000 

FIGURE 8.9.  Inferential statistics from the Paired-Samples test.
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TABLE 8.6.  Computing the Difference Values for Blood Pressure
Patient Prior After D D2

  1 120 135 15 225

  2 117 118   1     1

  3 119 131 12 144

  4 130 128 –2     4

  5 121 121   0     0

  6 105 115 10 100

  7 128 124 –4   16

  8 114 111 –3     9

  9 109 117   8   64

10 120 120   0     0

SD = 37 SD2 = 563

Just like before, we compute D  by taking the average of the difference scores (i.e., 
37/10 = 3.7) and include it in our formula:
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We can insert the values for SD2, SD, and n into our equation and use the follow-
ing steps to compute t:

1.	

( )

=
 − 
 −  

3.7

1369
563

10
10 10 1

t

2.	
3.7

563 136.9
90

t =
− 

  

3.	 3.7

426.1
90

t =
 
  

4.	
( )
3.7

4.73
t =

5.	 =
3.7
2.18

t

Finally, we are left with a t value of 1.70; this matches Figures 8.10 and 8.11 that 
would be created by SPSS.
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You can see from the descriptive statistics that the average blood pressure before 
the medication is 118.3, with a slightly higher blood pressure of 122 after the medica-
tion has been taken. If we compute our effect size of .538 based on these values, we 
can see that the intervention had a moderate influence on our dependent variable.

We can now plot our computed t value and the appropriate critical value. Remem-
ber, since we are dealing with a two-tailed hypothesis, it is necessary to divide alpha by 
2 and find the critical value for alpha = .025. Using the table, along with 9 degrees of 
freedom, our critical value of t is 2.262. As shown in Figure 8.12, we would then mark 
that off on both ends of our normal curve.

Since our computed value is within 
the range of the positive and negative 
critical values, we do not reject the null 
hypothesis; even though the average 
“After” blood pressure rose slightly, it 
wasn’t a significant difference. This is 
verified by the two-tailed p value of .123. 
In other words, after all of this, we have 
shown that the drug manufacturers 
have nothing to worry about. Apparent-
ly, their new migraine medicine doesn’t 
significantly affect the average systolic 
blood pressure.

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Before the Medication 118.3000 10 7.66014 2.42235 Pair 1 

After the Medication 122.0000 10 7.49815 2.37112 

FIGURE 8.10.  Descriptive statistics from the Paired-Samples test.

Paired Samples Test 

Pair 1 

 
After the 

Medication - 

Before the 

Medication 

Mean 3.70000 

Std. Deviation 6.88073 

Std. Error Mean 2.17588 

Lower -1.22218 

Paired Differences 

95% Confidence Interval of 

the Difference Upper 8.62218 

T 1.700 

Df 9 

Sig. (2-tailed) .123 

FIGURE 8.11.  Inferential statistics from the Paired-Samples test.

FIGURE 8.12.  Using the computed and critical 
values of t to test the hypothesis.

Cop
yri

gh
t ©

 20
21

 The
 G

uil
for

d P
res

s



	 The Dependent-Sample t-Test  |  229

Let’s Move Forward and Use Our Six-Step Model

Since we are now proficient in doing the calculations by hand, let’s use our six-step 
approach to work with a middle school math teacher. In this case, the teacher has 
noticed that many of her students are very apathetic toward math. This, she knows, 
can contribute to low levels of achievement. The teacher, realizing that something must 
be done, begins to investigate ways to get her students more interested in their studies.

During her investigation, the teacher finds a new software package that seems 
to be exactly what she needs. The particular package starts by asking students about 
their personal interests and activities, and then it creates word problems based on 
that information. By tailoring the math lesson to each individual student, the teacher 
hopes to foster more interest in her subject. She hopes, of course, this will lead to less 
apathy and higher achievement.

This really excites the teacher and a plan is immediately put into effect. The teach-
er plans to measure student interest in math and then use the software for 10 weeks. 
At the end of the 10 weeks, she plans on using the same instrument to see if there has 
been any change in their feelings toward math.

Identify the Problem

There is definitely a straightforward, important problem in the 
teacher’s room, and she has the expertise, resources, and time 
to investigate it. It would be easy for her to collect numeric data 
to determine levels of apathy toward math, and there appear to 
be no problems with the ethicality of her investigation. Here is 

her problem statement:

	� Math teachers have found many students are apathetic toward their subject 
matter; this, they feel, may lead to lower achievement. This study will 
investigate using a software package that tailors the text of word problems to 
each student’s given interests and activities. This, they believe, will lead to 
lower apathy and higher achievement.

State a Hypothesis

From the text of the scenario it is easy to develop the hypothesis 
the teacher will be investigating:

	� Levels of student apathy will be significantly lower 
after using the new software system for 10 weeks than 
they were prior to using the software.

As we can see, we have a directional hypothesis because we have stated that stu-
dents will have lower levels of apathy after the intervention than they did before it. 
Again, we stated it in this manner because it reflects the situation that the teacher 
wants to investigate. The corresponding null hypothesis would read:

STEP 1STEP 1

STEP 2STEP 2
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	� There will be no significant difference in levels of student apathy before 
using the software and levels of student apathy after using the software.

Identify the Independent Variable

We have two groups we can easily identify—students before 
using the software and the same students after using the soft-
ware. Given that, we can call the independent variable “Stu-
dent” and use the two groups as our levels. Since we are mea-
suring the same group at two different points in time (i.e., their 
pretest scores and their posttest scores), we will use a depen-
dent-sample t-test.

Identify and Describe the Dependent Variable

Our dependent variable is student apathy, and we can see the 
scores below in Table 8.7. The first column, “Student ID Num-
ber,” is the unique number identified for each student. The sec-
ond column shows the student’s apathy score at the start of the 
10 weeks, and the third column shows the same student’s apathy 
score at the end of the 10 weeks.

TABLE 8.7.  Student Apathy Scores
Student  

ID number
Starting 

 apathy score
Ending  

apathy score

1 62 50

2 67 55

3 67 55

4 60 68

5 69 60

6 66 60

7 70 65

8 72 65

9 68 70

SPSS would produce Figure 8.13, our descriptive statistics. In this case, we used 
nine pairs of data representing “Starting Apathy” and “Ending Apathy” scores. In 
the Mean column, we see two values. The Starting Apathy scores show that students 
had an average score of 66.78 on the questionnaire administered at the start of the 10 
weeks. The Ending Apathy scores, collected at the end of the 10 weeks, show an aver-
age of 60.89. For each of the mean values, we also see the standard deviation and the 
standard error of the mean.

STEP 3STEP 3

STEP 4STEP 4
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Choose the Right Statistical Test

In this case, we have one independent variable with two levels 
that are related; we say the levels are related because the quan-
titative data collected for one level is related to the quantitative 
data in the other level. It is clear that we need to use a depen-
dent-sample t-test.

Use Data Analysis Software to Test the Hypothesis

Our software would compute the results shown in Figure 8.14.
We can see a mean difference of –5.889, which would allow 

us to compute an effect size of .856. While these numbers look 
promising, do not let them take your attention away from test-
ing our hypothesis using the p value. In this case, we have to 

divide the (Sig. 2-tailed) value of .033 by 2; this gives us a one-tailed p value of .0165 
so we will reject the null hypothesis; the ending apathy score is significantly lower 
than apathy at the outset of the study; hopefully this will lead to higher achievement 
in math!

STEP 5STEP 5

STEP 6STEP 6

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Ending Apathy 60.8889 9 6.67915 2.22638 Pair 1 

Starting Apathy 66.7778 9 3.76755 1.25585 

FIGURE 8.13.  Descriptive statistics from the Paired-Samples test.

Paired Samples Test 

Pair 1 
 Ending Apathy - 

Starting Apathy 

Mean -5.88889 

Std. Deviation 6.88194 

Std. Error Mean 2.29398 

Lower -11.17882 

Paired Differences 

95% Confidence Interval of 

the Difference Upper -.59896 

T -2.567 

Df 8 

Sig. (2-tailed) .033 

FIGURE 8.14.  Inferential statistics from the Paired-Samples test.
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 The Case of the Unexcused Students

In this case, let’s try to help one of our friends: the principal of a local high school. 
It seems, with every year that passes, that students miss more and more days due to 
unexcused absences. The principal, being a believer in the tenets of behavioral psy-
chology, decides to try motivating the students with a reward. The students are told 
that, if they can significantly decrease the number of times they are absent during the 
term, they will be rewarded with a party. Let’s use our six-step approach to see if we 
can help him investigate whether or not his plan will work.

Identify the Problem

The principal is faced with somewhat of a two-pronged prob-
lem. Students are missing more and more days of school; since 
absences are directly related to lower achievement, it would be 
in the best interest of the students to be at school as often as 
possible. At the same time, many states base school funding 

partially on student attendance rates; it would be in the principal’s best interests (and 
career aspirations) to get students to be in school as often as possible. This is clearly a 
problem that can be investigated using inferential statistics.

	� The school in question is experiencing a problem with low student 
attendance. Since both achievement and school funding are related to 
student attendance, it is imperative that action be taken to address the 
problem. The principal will investigate whether an extrinsic reward will 
help increase attendance.

State a Hypothesis

Here is the research hypothesis that corresponds to the princi-
pal’s plan:

	� Students will have significantly fewer absences after 
the party program than they did before the party 
program.

We can see this is a directional hypothesis in that we are suggesting the total num-
ber of absences will be less than they were before starting the study. We can state the 
null hypothesis in the following manner:

	� There will be no significant difference in the number of absences prior to the 
party program and after the party program is announced.

STEP 1STEP 1

STEP 2STEP 2
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Identify the Independent Variable

We could easily identify the independent variable and its lev-
els by noting our interest in one set of students at two distinct 
points in time: before the promise of the party and after the 
party plan was announced.

Identify and Describe the Dependent Variable

We know we must collect the number of absences for each stu-
dent, both in the semester before the plan and at the end of the 
semester in which the plan was implemented. In Table 8.8, we 
can see we have a row that contains the number of absences for 
students A through H before the start of the study and another 

row that shows the number of absences for the same students at the end of the term. 
SPSS would calculate the descriptive statistics shown in Figure 8.15.

TABLE 8.8.  Absence Data

A B C D E F G H

Before the plan 8 7 6 5 6 8 4 3

After the plan 7 6 7 4 6 7 4 3

Things are looking good; the average number of absences after the implementa-
tion of the party program is less than the average number before starting the pro-
gram. We have to be careful, though; the values are very close. We should run the 
appropriate statistical test and see what the output tells us.

Choose the Right Statistical Test

Here we have the perfect scenario for a dependent-sample t-test 
because there is one independent variable with two related lev-
els and one dependent variable representing quantitative data.

Use Data Analysis Software to Test the Hypothesis

We can use SPSS to easily compute the inferential statistics we 
would need to test our hypothesis; these statistics are shown in 
Figure 8.16.

We have a very small standard deviation of the difference 

STEP 3STEP 3

STEP 4STEP 4

STEP 5STEP 5

STEP 6STEP 6

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Ending Absences 5.50 8 1.604 .567 Pair 1 

Starting Absences 5.88 8 1.808 .639 

FIGURE 8.15.  Descriptive statistics from the Paired-Samples test.
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(i.e., .744) and an even smaller mean difference score (i.e., –.375); this gives us an effect 
size of .504; things are not looking good for the principal but let’s move forward.

Knowing that we have a one-tailed hypothesis, we would divide our Sig. (2-tailed) 
value and arrive at a one-tailed p value of .0985; this means we cannot reject our null 
hypothesis. We could verify this by comparing our computed value of t, –1.416, to our 
critical t value, 2.365. Although the principal tried, the offer of a party at the end of 
the term just was not enough of a stimulus to get students to come to school.

 The Case of Never Saying Never

Never one to give up, the principal of the high school decides to try again. Thinking 
back over the original plan, the principal decides the offer of a party just was not 
enough of a reward to get students to change their behavior. The principal brain-
storms with some teachers, and they develop what they feel is a better plan. The litera-
ture suggests that the traditional school day, because it starts so early in the morning, 
is not conducive to getting teenagers to come to school. Knowing that, the principal 
suggests starting school at noon and running it until 6:00 P.M. This, the principal 
feels, will allow the students to sleep in and still have time in the evening for all of their 
activities. Upon announcing the plan to the public, the principal is inundated with 
criticism as many feel forcing children to stay later in the day will cause even more 
absenteeism. The principal, vowing at least to test the plan, concedes they may be right 
but continues to plan for setting up the new schedule.

Paired Samples Test 

Pair 1 

Ending 

Absences - 

Starting 

Absences 

Mean -.375 

Std. Deviation .744 

Std. Error Mean .263 

Lower -.997 

Paired Differences 

95% Confidence Interval of 

the Difference Upper .247 

T -1.426 

Df 7 

Sig. (2-tailed) .197 

FIGURE 8.16.  Inferential statistics from the Paired-Samples test.
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Identify the Problem

Obviously, the problem is exactly the same as what the principal 
addressed before. His plan worked to a minor degree, but as we 
have talked about, that difference may just be caused by error 
due to the exact students he worked with, the type of year the 
study was conducted, and so on. Given that, it’s time to move 

forward and try something else. Remember, his students’ future, not to mention his 
job, may hang in the balance! While the problem is the same, the problem statement 
will change slightly:

	� The school in question is experiencing a problem with low student 
attendance. Since both achievement and school funding are related to 
student attendance, it is imperative that action be taken to address the 
problem. The principal will investigate whether a change in the school’s 
schedule will help increase attendance.

State a Hypothesis

Based on this story, we can clearly see a hypothesis has formed. 
Since the principal is not sure if attendance will go up or down, 
the hypothesis must be stated as two-tailed (Step 1):

	� Students attending high school under the new 
schedule will have a significantly different number 
of absences than they did when they were under the 
old schedule.

The null hypothesis would read:

	� There will be no significant difference in absences between the new schedule 
and the old schedule.

Identify the Independent Variable

Just as in the prior example, the independent variable is the 
student body. Remember, however, we are measuring them at 
two different points in time (i.e., before the new schedule and 
after the new schedule).

Identify and Describe the Dependent Variable

The dependent variable is the number of times the students 
were absent; let’s use the data in Table 8.9 to compute the 
descriptive statistics shown in Figure 8.17.

STEP 1STEP 1

STEP 2STEP 2

STEP 3STEP 3

STEP 4STEP 4
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TABLE 8.9.  Absence Data

A B C D E F G H

Old schedule 4 5 6 5 6 7 6 7

New schedule 5 6 7 7 6 8 6 8

Choose the Right Statistical Test

This scenario calls for a dependent sample t-test since the two 
levels of the independent variable are related, and we use the 
dependent variable to collect parametric data.

Use Data Analysis Software to Test the Hypothesis

Using the results shown in Figure 8.18, we could compute a fairly 
large effect size (i.e., 1.37) but that might be the only good news. 
First, we can clearly see the mean number of absences went up 
during the trial period. This bad news is compounded when we 
look at the two-tailed p value, .006, and see that it is clearly less 

STEP 5STEP 5

STEP 6STEP 6

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Old Schedule 5.75 8 1.035 .366 Pair 1 

New Schedule 6.63 8 1.061 .375 

FIGURE 8.17.  Descriptive statistics from the Paired-Samples test.

Paired Samples Test 

Pair 1 
 Old Schedule - 

New Schedule 

Mean -.875 

Std. Deviation .641 

Std. Error Mean .227 

Lower -1.411 

Paired Differences 

95% Confidence Interval of 

the Difference Upper -.339 

T -3.862 

Df 7 

Sig. (2-tailed) .006 

FIGURE 8.18.  Inferential statistics from the Paired-Samples test.
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than our alpha value of .05. We have to reject our null hypothesis; there was a signifi-
cant difference in the number of absences. Unfortunately for the principal, this means 
the new schedule caused a significant increase in the number of absences!

Just in Case—A Nonparametric Alternative
Just as was the case with the independent-sample t-test, there are instances where 
either the data distribution is not conducive to using parametric statistics or we have 
collected data that are ordinal (ranked) in nature. In cases where this happens and 
the levels of the independent variable are dependent on one another, we have to use 
the nonparametric Wilcoxon t-test. Setting up, running, and interpreting the output 
of the Wilcoxon test is very similar to that of the dependent-sample t-test. Again, this 
is not something that happens often, and, like the Mann–Whitney U test, this test is 
something you need to keep in the back of your mind for those rare instances.

Summary
The dependent-sample t-test, much like its independent counterpart, is easy to un-
derstand, both conceptually and from an applied perspective. The key to using both 
of these inferential techniques is to keep in mind that they can be used only when 
you have one independent variable with two levels and when the dependent vari-
able measures quantitative data that is fairly normally distributed. Again, the labels 
“independent” and “dependent” describe the relationship between the two levels of 
the independent variable that are being compared.

As I said earlier, these two inferential tests are used widely in educational re-
search. What happens, though, when you have more than one independent variable, 
more than two levels of an independent variable, or even multiple dependent vari-
ables? These questions, and more, will be answered in the following chapters.

Do You Understand These Key Words and Phrases?

dependent-sample t-test Wilcoxon t-test

Do You Understand These Formulas?

Effect size for a dependent-sample t-test:	

difference

differencex
d

s
=
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t score for the dependent-sample t-test:
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Quiz Time!

As usual, before we wind up this chapter, let’s take a look at a couple of case studies. Read 
through these and answer the questions that follow. If you need to check your work, the 
answers are at the end of the chapter.

 The Case of Technology and Achievement

Proponents of technology in the classroom have suggested that supplying children with laptop 
computers will significantly increase their grades.

1.	What is the hypothesis being tested?

2.	What is the independent variable and its levels?

3.	What is the dependent variable?

4.	Based on Figures 8.19 and 8.20, what decision should they make?

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Laptops Used 85.2667 15 3.80726 .98303 Pair 1 

No Laptops 86.5333 15 4.79385 1.23777 

FIGURE 8.19.  Descriptive statistics from the Paired-Samples test.
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 The Case of Worrying about Our Neighbors

Citizens are concerned that the annexation of property adjoining their town will decrease the 
value of their homes. The city government insists there will be no change.

1.	What is the hypothesis being investigated?

2.	What is the independent variable and its levels?

3.	What is the dependent variable?

4.	Based on Figures 8.21 and 8.22, are the citizens’ concerns warranted?

Paired Samples Test 

Pair 1 
 Laptops Used - 

No Laptops 

Mean -1.26667 

Std. Deviation 6.08824 

Std. Error Mean 1.57198 

Lower -4.63822 

Paired Differences 

95% Confidence Interval of 

the Difference Upper 2.10489 

T -.806 

Df 14 

Sig. (2-tailed) .434 

FIGURE 8.20.  Inferential statistics from the Paired-Samples test.

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

Before Annex $116,027.73 15 $10,229.535 $2,641.255 Pair 1 

After Annex $106,555.87 15 $8,521.641 $2,200.278 

FIGURE 8.21.  Descriptive statistics from the Paired-Samples test.
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 The Case of SPAM

In order to attract new customers, a local entrepreneur is advertising an Internet service that 
guarantees customers will receive fewer unsolicited emails per month than they would using 
other services. After enrolling for the service, several customers complained that, contrary to 
the advertisements, they were actually getting more SPAM!

1.	What is the hypothesis the entrepreneur is stating?

2.	What is the independent variable and its levels?

3.	What is the dependent variable?

4.	Based on Figures 8.23 and 8.24, should the customers complain?

Paired Samples Test 

Pair 1 
 After Annex - 

Before Annex 

Mean $-9,471.867 

Std. Deviation $14,517.440 

Std. Error Mean $3,748.387 

Lower $-17,511.357 

Paired Differences 

95% Confidence Interval of 

the Difference Upper $-1,432.377 

t -2.527 

df 14 

Sig. (2-tailed) .024 

FIGURE 8.22.  Inferential statistics from the Paired-Samples test.

Paired Samples Statistics 

 Mean N Std. Deviation Std. Error Mean 

SPAM Before 46.00 16 5.465 1.366 Pair 1 

SPAM After 65.88 16 5.976 1.494 

FIGURE 8.23.  Descriptive statistics from the Paired-Samples test.Cop
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The Case of “We Can’t Get No Satisfaction”

The board of directors at a large corporation recently hired a new President, and, after a few 
weeks, the corporation’s administration felt they should survey the management staff to see if 
they were satisfied with their choice. Based on the results, managers seemed happy, leaving the 
administration feeling they had found exactly the right person for the job. After three months, 
however, the complaints starting piling in—something was going seriously wrong, management 
seemed very upset! Based on that, the members of the management team were asked to com-
plete the same satisfaction survey again. To the board of director’s dismay, the management’s 
satisfaction was lower; the question is, however, was it significantly lower?

1. What is the hypothesis the board of directors is stating?

2. What is the independent variable and its levels?

3. What is the dependent variable?

4. Based on Figures 8.25 and 8.26, what should the board of directors do?

Paired Samples Test 

Pair 1 

SPAM After - 

SPAM Before 

Mean 19.875 

Std. Deviation 9.444 

Std. Error Mean 2.361 

Lower 14.843 

Paired Differences 

95% Confidence Interval of 

the Difference Upper 24.907 

T 8.418 

Df 15 

Sig. (2-tailed) .000 

FIGURE 8.24.  Inferential statistics from the Paired-Samples test.

Paired Samples Statistics 

Mean N Std. Deviation Std. Error Mean 

Satisfaction Before 60.1333 15 6.63181 1.71233 Pair 1 

Satisfaction After 42.2667 15 5.57375 1.43914 

FIGURE 8.25.  Descriptive statistics from the Paired-Samples test.

Cop
yri

gh
t ©

20
21

 The
 G

uil
for

d P
res

s



242  |  STATISTICS TRANSLATED

 The Case of “Winning at the Lottery” 

I’ve often told friends that playing the lottery is a pass-time for people who don’t understand 
probability. To investigate this idea, let’s imagine that I can identify a group of 20 people who 
will tell me how much they spend on lottery tickets each week. I would then ask them to watch 
a brief video on probability as it relates to gambling. My thought is that this would lead to them 
to spending less money the following week. 

1.	What is the hypothesis I am testing?

2.	What is the independent variable and its levels?

3.	What is the dependent variable?

4.	Based on Figures 8.27 and 8.28, what will I learn? 

Paired Samples Test 

Pair 1 

 
Satisfaction 

Before - 

Satisfaction 

After 

Mean 17.86667 

Std. Deviation 7.70776 

Std. Error Mean 1.99013 

Lower 13.59825 

Paired Differences 

95% Confidence Interval of 

the Difference Upper 22.13508 

T 8.978 

df 14 

Sig. (2-tailed) .000 

FIGURE 8.26.  Inferential statistics from the Paired-Samples test.

FIGURE 8.27.  Descriptive Statistics from the Paired-Samples Test.
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FIGURE 8.28.  Inferential statistics from the Paired-Samples Test.
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