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Hypothesis Testing:  
Criticisms and Alternatives 

This chapter begins by distinguishing among different uses of hypothesis tests. 

It then summarizes the major criticisms that have been offered. Two alternatives 

to standard tests, the AIC and the BIC, are described, and the different criteria 

are applied to four examples. The examples show that model selection by 

the AIC, BIC, and classical hypothesis tests can lead to dramatically different 

conclusions. 

2.1	 Hypothesis Testing and Its Discontents 

Classical hypothesis tests became the subject of severe criticism almost as 

soon as they began to be widely used: Berkson’s (1938, 1942/1970) critiques 

are well known and are still cited today. The criticism has continued and 

even intensified since that time. Cohen (1994, p. 997), a psychologist, charges 

that hypothesis testing “has not only failed to support the advance of psy-

chology as a science but also has seriously impeded it.” Mason (1991, p. 343), 

a sociologist, holds that “much, perhaps most, use of statistical inference in 

the social sciences is ritualistic and even irrelevant. . . . Those asterisks that 

adorn the tables of our manuscripts are the product of ritual and little, if 

anything, more than that.” McCloskey (1998, p. 111), an economist, pro-

claims that “statistical significance is bankrupt; all the ‘findings’ of the Age 
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of Statistical Significance are erroneous and need to be redone.” Gill (1999, p. 

647), a political scientist, speaks of “the insignificance of null hypothesis 

significance testing.” The philosophers Howson and Urbach (1994, p. 50) 

assert that “the principles of significance testing . . . are simply wrong, and 

clearly beyond repair.” Lindley (comment on Johnstone, 1986, p. 582), a stat-

istician, maintains that “significance tests . . . are widely used, yet are logi-

cally indefensible.”1 Further examples of such views could easily be found. 

Although their critics have been more vocal, hypothesis tests have some 

defenders. The basic argument in their favor was made by Mosteller and Bush 

(1954, pp. 331–332; see also Davis, 1958/1970, and Wallis and Roberts, 1956) 

60 years ago: “The main purpose of a significance test is to inhibit the natural 

enthusiasm of the investigator.” Without some accepted standard, research-

ers would be able to claim any parameter estimate with the expected sign as 

favorable evidence or, alternatively, dismiss any deviations from a preferred 

model as “trivial.” Hypothesis tests have survived and spread in the face of 

criticism because they fill an important need. However, even if some stan-

dard is necessary, it is reasonable to ask whether conventional hypothesis 

tests provide the best standard, and this question will be explored in the fol-

lowing chapters. 

2.2	Us es of Hypothesis Tests 

Before considering the criticisms of hypothesis tests, it is necessary to distin-

guish the different purposes for which they are used. This section discusses 

the major ones, drawing particularly on Cox (1977; see also Anscombe, 1961, 

and Krantz, 1999). 

2.2.1	C onclusions about Parameters of Interest 

An important use of hypothesis tests, and the one that has received the most 

attention in statistical theory, is to evaluate theoretically based propositions 

1Articles in statistics journals are often followed by short comments and replies. 
Comments will be included as separate entries in the bibliography if they have dis-
tinct titles, and otherwise indicated as in this reference.
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14	 Hypothesis Testing and Model Selection in the Social Sciences	

about the value of a parameter. In most cases, the proposition is that the value 

of an independent variable x will have a particular association—positive or 

negative—with the outcome variable y after controlling for other variables. 

Sometimes the proposition of theoretical interest involves other aspects of 

the model such as functional form. The usual procedure is to fit an equation 

of the form  ̂y  = a + bx + g1 z1 . . . + g kz k + e, where x is  the variable of interest 

and z1 . . . zk are other variables that might influence y.2 The claim that x is 

associated with y implies that the null hypothesis b = 0 is false. Therefore, if 

the null hypothesis is rejected and the parameter estimate has the expected 

sign, that counts as support for the prediction derived from theory. 

If a theory predicts an exact value for a parameter, it is possible to test 

the null hypothesis that it has that value. Accepting the null hypothesis then 

is a success for the theory in the sense that it is not refuted, although it does 

not provide positive evidence in favor of it. In the social sciences, it is rare 

for a theory to predict a specific nonzero parameter value, but sometimes a 

theory implies that there will be no association between two variables after 

appropriate controls are included. 

2.2.2	C hoice of Control Variables 

In most research, there are many variables that might affect the outcome 

but that are not of theoretical interest. Omitting variables that affect the 

dependent variable will usually produce biased estimates of the parameters 

of interest, so the best strategy for minimizing bias would be to include every 

potential control variable. However, the inclusion of controls reduces the 

precision of the estimates of the parameters of interest, especially in small 

samples. As a result, it is necessary to have some procedure to decide which 

potential control variables should be included and which should be omit-

ted. Hypothesis tests are often used to make these decisions: accepting the 

hypothesis that the coefficient for some variable equals zero means that it 

can be omitted. In contrast to conclusions about parameters of interest, the 

sign of the parameter estimate is not of interest for control variables: the only 

question is whether it is different from zero. 

2I assume a linear model for simplicity of exposition. 
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2.2.3	 Primary Structure 

“Primary structure” (Cox, 1977, p. 52) involves parts of the model specifica-

tion that define the parameters of theoretical interest. For example, many 

theories in the social sciences propose a relationship of the form “the larger 

the x, the larger the y.” Hypotheses of this kind can be represented by: 

	 y = a + b f(x) + e	 (2.1) 

where f(x) is any monotonically increasing function of x. The parameter of 

theoretical interest is b, and the nature of f(x) is an issue of primary structure. 

Simplicity of interpretation or ease of estimation are often important 

considerations in the choice of f(x). In this example, one might begin with a 

linear model and test it against a quadratic model 

	 y = a + b1 x + b2 x2 + e 	 (2.2) 

Even if the hypothesis that b2 = 0 could be rejected, a researcher might still 

prefer to use a linear regression as long as it provided a good approximation. 

However, the precise specification of primary structure is sometimes 

important. For example, Myrskylä, Kohler, and Billari (2009) analyze the rela-

tionship between socioeconomic development and fertility in nations of the 

contemporary world (see Section 2.6.2 for a more detailed discussion). There 

is a strong negative association over most of the values of development, but 

they propose that at higher levels of development the relationship is reversed: 

that is, ∂y/∂x is positive when x is near the highest levels observed in the data. 

Conclusions on this point are sensitive to the exact specification of the rela-

tionship between x and y, so the issue is more important than it would be if 

the research question simply involved the general direction of association. 

2.2.4	 Secondary Structure 

Secondary structure involves aspects of the model that are relevant to the 

estimation of parameters of interest but not to their definition. In the case 

of linear regression, the assumptions that the errors are independent, follow 

a normal distribution, and have constant variance are aspects of secondary 

structure. If these assumptions are incorrect, the parameter estimates will 
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16	 Hypothesis Testing and Model Selection in the Social Sciences	

still have the same interpretation, but ordinary least squares will be an inef-

ficient method of estimation. As in questions of primary structure, the null 

hypothesis is often regarded as a convenient approximation rather than as a 

proposition that might be exactly true. 

2.2.5	G oodness of Fit 

The idea of a goodness-of-fit test is to assess the fit of a model to the data 

without specifying an alternative model (Anscombe, 1963). However, many 

goodness-of-fit tests can be understood as tests against a very general alterna-

tive. For example, the chi-square test for independence in a contingency table 

implicitly compares the model of independence to a “saturated” model in 

which each cell has its own parameter mij. The defining feature of a goodness-

of-fit test is that the alternative model is not adopted if the null hypothesis is 

rejected—rather, the result is taken to mean that it is necessary to continue 

searching for a satisfactory model. 

Tests against a saturated model are not always possible—for example, in 

a standard regression model, the estimate of the variance is undefined if we 

fit a separate parameter for each observation. However, some specification 

tests are designed to detect a wide range of potential flaws in a model with-

out specifying a serious alternative. For example, Davidson, Godfrey, and 

MacKinnon (1985) propose testing the hypothesis g = 0 in the time series 

regression: 

	 yt = a + b xt + g(xt+1 + xt–1) + e	 (2.3) 

Because it is logically impossible for future values of x to influence y, Equa-

tion 2.3 would not be adopted if the hypothesis were rejected. Rather, the 

result would be taken to mean that the independent variable and the error 

term are correlated in the regression 

	 yt = a + b xt + e	 (2.4) 

Such correlation could result from a variety of causes, including omitted 

variables or errors in the measurement of x, so if the null hypothesis were 

rejected it would be necessary to carry out tests for the particular possibili-

ties and modify Equation 2.4 in an appropriate fashion. 
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As this example illustrates, the distinction between a goodness-of-fit 

test and a test of a specific hypothesis is a matter of degree: a test may indi-

cate a number of possible problems in the model without being completely 

general. Whether a given test should be regarded as a goodness-of-fit test 

thus depends to some extent on the purposes of the researcher. For example, 

serial correlation in the residuals of a time series regression may result from 

the omission of a relevant variable or misspecification of the functional form. 

If the hypothesis of no serial correlation is rejected, a researcher might esti-

mate the model using a “correction” for serial correlation, or might conduct a 

wider search for different kinds of misspecification. 

2.3	C riticisms of Conventional  
Hypothesis Testing 

This section describes some of the most important criticisms of the con-

ventional practices described in Section 1.3. The validity of the criticisms 

will not be considered here but rather left until after the discussion of the 

classical theory of hypothesis testing in Chapter 3. The first three criti-

cisms involve the scope of hypothesis tests: they hold that there are situa-

tions in which conventional hypothesis tests cannot be applied or that there 

are important questions they cannot answer. The fourth and fifth involve 

ambiguity or paradoxes. The sixth, seventh, and eighth criticisms are more 

fundamental and raise questions about the logic of conventional hypothesis 

testing. 

2.3.1	 Sampling 

Almost all textbook presentations of hypothesis testing involve random sam-

pling from a population, or a process that can be repeated under identical 

conditions such as plays in a game of chance. In that case, p-values repre-

sent the proportion of random samples for which the test statistic would be 

greater than or equal to the observed value. However, hypothesis tests are 

often applied to data that do not represent random samples. For example, 

many statistical analyses involve the span of time for which data on the vari-

ables of interest are available. Such data could be regarded as a sample from 

the history of the unit (past and future) but cannot plausibly be regarded as a 
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18	 Hypothesis Testing and Model Selection in the Social Sciences	

random sample. Other research involves complete populations, for example, 

all nations in the contemporary world. 

Some observers maintain that conventional hypothesis tests, even if 

they are valid in principle, can properly be applied only to data that rep-

resents a random sample from some population. Moreover, they hold that 

tests should be interpreted only in terms of sampling error, not in terms 

of general uncertainty about the parameter values. According to Morrison 

and Henkel (1969/1970, p. 186), “Significance tests . . . are not legitimately 

used for any purpose other than that of assessing the sampling error of a 

statistic designed to describe a particular population based on a probabil-

ity sample.” McCloskey (1996, p. 40) quotes this remark and adds that 

“no one disputed their declaration because it is indisputable. That is what 

‘statistical significance’ means, mathematically speaking.” Similarly, Schrodt 

(2014, p. 293) says that the use of significance tests on data that are not from 

probability samples requires “six-impossible-things-before-breakfast gyra-

tions.” As Schrodt’s comment implies, there is disagreement on this point: 

some observers argue that conventional hypothesis tests can legitimately be 

applied to populations and nonrandom samples. This issue will be discussed 

in more detail in Section 3.1. 

2.3.2	C redibility of Point Null Hypotheses 

Many null hypotheses are not credible in principle. For example, standard 

variables such as gender, education, marital status, income, or ethnicity can 

be expected to have at least some slight association with almost any individ-

ual-level outcome that is of interest to social scientists. Turning to another 

unit of analysis, Mulligan, Sala-i-Martin, and Gil (2003) ask, “Do democra-

cies have different public policies than nondemocracies?” If their question 

is taken literally, the answer is surely yes—the real question is whether the 

policies are “substantially” different. This point raises the question of what is 

learned from the test of a hypothesis that is almost certainly false. As Giere 

(1972, p. 173) puts it, “We know when we start that the null hypothesis is 

false. If our test fails to reject it, that only tells us we did not take a sample 

large enough to detect the difference, not that there is none. So why bother 

testing in the first place?” 
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As with the first criticism, there is disagreement on this issue. Some 

observers, such as Tukey (1991), maintain that all or almost all point null 

hypotheses are false. Others maintain that many or most point null hypoth-

eses are true: for example, Sterne and Davey-Smith (2001, p. 227) estimate 

that about 90% of the null hypotheses tested in epidemiology are correct. The 

answer is likely to differ by field of study, but it is safe to say that many of the 

null hypotheses that are tested in the social sciences could be rejected as a 

matter of common sense without any statistical test. 

2.3.3	R anking of Models 

A test of a point hypothesis can be regarded as a method for choosing between 

two models. The model represented by the null hypothesis can be regarded 

a special case of a larger model, and the null hypothesis involves the restric-

tion that some of the parameters of the larger model have specific values. 

However, when more than two models are involved, a hypothesis test does 

not always lead to a clear decision in favor of one of them. This point was 

discussed in Section 1.3, using the example of the the regression 

	 y = a + b1 x1 + b2 x2 + e 

The full model may be tested against three alternative models, one imposing 

the restriction b1 = 0, another imposing the restriction b2 = 0, and the third 

imposing the restriction b1 = b2 = 0. It is possible that both b1 = 0 and b2 = 

0 can be accepted while b1 = b2 = 0 is rejected. In this case, it would seem 

reasonable to say that there is no strong basis for preferring the model with 

b1 = 0 over the model with b2 = 0, but a researcher might nevertheless want 

to make a tentative choice. Conventional hypothesis tests do not provide a 

means to do this. 

As a slightly more complex example, suppose that we are comparing two 

ways of representing social position: a single numerical measure of socio-

economic status (SES) and a set of five class categories. Hypothetical data for 

this situation are shown in Table 2.1. The column labeled p gives the number 

of independent variables (not counting the constant), and D represents the 

deviance. A test of the null hypothesis that the coefficients for the class dum-

mies are all zero when SES is included gives a chi-square statistic of 3.0 with 
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4 degrees of freedom, for a p-value of .56. A test of the null hypothesis that 

the coefficient for SES is zero when class is included gives a chi-square of 3.0 

with 1 degree of freedom (p = .084). Therefore, neither the class nor the SES 

model can be rejected in favor of the “full” model including both class and 

SES at the 5% level. 

In this case, common sense suggests that the SES model is superior on 

the grounds that it fits equally well while using fewer parameters. The SES 

and class dummies models cannot be tested against each other using stan-

dard tests, because they are not nested. If a non-nested hypothesis test were 

used, neither model could be rejected against the other at the 5% level. One 

could say that the SES model should be preferred on the grounds that, in a 

test against the full model, the class model can be rejected at the 10% level 

and the SES model would not, but it is difficult to say how much evidence 

this amounts to. 

As this example illustrates, conventional hypothesis tests do not pro-

duce a complete ranking of potential models. A model that cannot be rejected 

against any of the others can be regarded as acceptable, but often there will 

be more than one acceptable model. The example in Table 2.1 is a very simple 

one: as more parameters are considered, the chance of having more than one 

“acceptable” model will tend to increase. Moreover, the classification of mod-

els as acceptable or unacceptable will differ depending on the significance 

levels used to make the decisions, adding another level of ambiguity. 

2.3.4	F lexible versus Inflexible Interpretation  
of Significance 

The p-value is a continuous measure, and figures slightly above and below 

conventional standards of statistical significance represent almost the same 

TABLE 2.1. Hypothetical Fit Statistics from 
Alternative Definitions of Social Position

Model p D

Both 5   75.0

SES 1   78.0

Class dummies 4   78.0

Neither 0 100.0
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amount of evidence: as Rosnow and Rosenthal (1989, p. 1277) put it, “Surely 

God loves the .06 almost as much as the .05.” This point suggests that the 

standards should be treated flexibly—for example, it would be reasonable to 

regard a p-value of .06 as providing some evidence against the null hypoth-

esis. However, other observers recommend strict adherence to conventional 

levels on the ground that it reduces the influence of the investigator’s hopes 

and expectations on conclusions. Allowing room for judgment in the inter-

pretation of p-values introduces a bias in favor of conclusions that support 

prior beliefs, and rigid adherence to a conventional level of significance pre-

vents such “gamesmanship” (Bross, 1971, p. 508). 

2.3.5	A rbitrary Nature of Significance Levels 

The general idea behind conventional tests is that a hypothesis should be 

rejected if the observed data would be unlikely if the hypothesis were true. 

Although this principle seems reasonable, it is not clear where to draw the 

line between “likely” and “unlikely.” In the early development of hypothesis 

testing, a number of different conventions were proposed. At one time, a 

t-ratio of 3 (equivalent to an a level of about .0025) was often taken as the 

standard. According to one textbook (Waugh, 1943, p. 257), “Some call a 

statistical result ‘significant’ if it would arise by chance only once in 100 

times. . . . Our point, three standard errors, errs if at all in requiring too much 

before the possibility of chance is ruled out. It is, however, the most com-

monly accepted point among American statisticians.” A debate between Ross 

(1933) and Peters (1933) in the American Journal of Sociology involves the use 

of 3 standard errors as the standard for significance and anticipates some of 

the points made in later debates over the interpretation of “nonsignificant” 

results. A somewhat later textbook (Hagood and Price, 1952, pp. 323–324) 

reported that “in certain fields of research it has become conventional to use 

the ‘5-percent level of significance,’ . . . in others to use the ‘one-percent level 

of significance’ . . . and still others to use the ‘one tenth of one-percent level 

of significance.’ ” As time went on, the convention of 5% became firmly estab-

lished across a variety of fields (see Leahey, 2005, for a historical account of 

this process in sociology). 

Some observers argue that the widespread convergence on the 5% level 
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shows that it is not arbitrary. Bross (1971, p. 507) argues that the .05 standard 

has come to dominate because it works well in practice. For example, a level 

of 0.1% “is rarely attainable in biomedical experimentation. .  .  . From the 

standpoint of communication the level would have been of little value and 

the evolutionary process would have eliminated it.” Cowles and Davis (1982, 

p. 557) maintain that early statisticians had adopted something close to the 

5% level of significance as a standard even before the development of the 

theory of hypothesis testing, and they suggest that it represents a widespread 

disposition: “People, scientists and nonscientists, generally feel that an event 

which occurs 5% of the time or less is a rare event.” 

However, regardless of the merits of these arguments, the 5% conven-

tion is certainly not derived from statistical theory. Lehmann (1959, p. 61) 

observed that “it has become customary to choose for a one of a number of 

standard values such as .005, .01, or .05. There is some convenience in such 

standardization since it permits a reduction in certain tables needed for car-

rying out various tests. Otherwise there appears to be no particular reason 

for selecting these values.” Yule and Kendall (1950, p. 472) were more direct: 

“It is a matter of personal taste.” 

2.3.6	E ffects of Sample Size 

Many observers have noticed that it is often easy to reject null hypotheses 

when the number of cases is large. In a sufficiently large sample, researchers 

who use hypothesis tests to guide model selection are often led toward com-

plicated models containing many parameters that seem unimportant or dif-

ficult to interpret. In Berkson’s (1938, pp. 526–527) frequently cited words: 

“I make the following dogmatic statement, referring for illustration to the 

normal curve: ‘If the normal curve is fitted to a body of data representing 

any real observations whatever of quantities in the physical world, then if 

the number of observations is extremely large—for instance, on an order of 

200,000—the chi-square p will be small beyond any usual limit of signifi-

cance.’ ” This issue is sometimes referred to as a distinction between “statis-

tical” and “substantive” significance—in a large sample, effects that are too 

small to be of practical or scientific interest may be statistically significant. 

In itself, this point is not an argument against the use of hypothesis 

tests. In the approach described in Section 1.2, if the null hypothesis is 
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rejected the investigator looks at the size of the parameter estimate. At this 

stage, some statistically significant parameter estimates may be set aside as 

being too small to be worth further discussion. Researchers who omitted the 

hypothesis test and immediately looked at parameter estimates would put 

themselves at risk of “explaining” effects that do not actually exist. As Wal-

lis and Roberts (1956, p. 480) observed, “It is futile to speculate on practical 

significance unless the finding is statistically significant.” 

The connection between sample size and statistical significance does 

raise a more serious problem, however. There are two kinds of errors—reject-

ing a true null hypothesis (Type I error) and accepting a false null hypothesis 

(Type II error). If one uses a constant standard of statistical significance, the 

chance of Type II errors declines as the sample size increases, but the chance 

of Type I errors remains the same. Yet, if both types of error are important, it 

is desirable to make the chances of both decline. This would mean using a 

generous standard for statistical significance in small samples and making 

the standard increasingly stringent as the number of cases increases. Many 

observers have called for such adjustments: for example, Wolfowitz 

(1967/1980, p. 440) says that “the use of the conventional levels of signifi-

cance (.05, .01, .001) without any regard for the power of the test is an absur-

dity which has been pointed out in many places.” Yet there are no generally 

accepted principles for doing this: Kadane and Dickey (1980, p. 246) observe 

that “after all these years there is no satisfactory theory of how to decide what 

level of test to set, and most practitioners continue to use .05 or .01 in an 

automatic way, without justification.” Sometimes ad hoc adjustments are 

made, such as using .10 as the standard for significance in a “small” sample, 

but these are open to the same objection as the flexible interpretation of sta-

tistical significance discussed in the previous section: they let researchers 

adjust the standards to increase the chance of reaching the conclusion that 

they prefer.3  

3Hendry (1995, p. 490) proposes setting a equal to 1.6N–0.9, asserting that the rule 
strikes “a reasonable balance between the costs of Type I and Type II errors when 
the actual cost of either mistake cannot be assigned.” However, he does not offer a 
theoretical argument for the formula; he merely says that it seems to match com-
mon practice. Even if his judgment is accurate on this point, it raises the question of 
whether common practice is correct. 
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2.3.7	 Lack of Symmetry 

Conventional hypothesis tests are asymmetrical: they cannot produce evi-

dence in favor of the null hypothesis, only evidence against it. As Fisher 

(1937, p. 19) put it, “The null hypothesis is never proved or established. . . . 

Every experiment may be said to exist only in order to give the facts a chance 

of disproving the null hypothesis.” 

Whether the inability to produce evidence in favor of the null hypoth-

esis should be regarded as a drawback is open to debate. Some observers see 

asymmetry as desirable or necessary. Tukey (1960, p. 426) proposes that a 

basic question in scientific research is whether or not we can reach a con-

clusion, and that in this sense “asymmetry can be essential.” A nonsignifi-

cant test statistic tells us that we cannot reach a conclusion about whether a 

parameter is positive, negative, or zero. Popper (1959) offers a different argu-

ment for asymmetry: he holds that, as a matter of principle, scientific theories 

can never be confirmed, only refuted. However, in a conventional hypothesis 

test, the alternative hypothesis cannot be refuted: even if the parameter esti-

mate is exactly zero, that result is compatible with the proposition that it has 

a small positive or negative value. Therefore, Popper’s approach implies that 

the null hypothesis should represent the theoretical prediction. 

Other observers see scientific research as a contest among competing 

explanations (e.g., Chamberlin 1890/1965; Anderson, 2008; Burnham and 

Anderson, 2002). This view implies that a test should be able to provide evi-

dence in favor of one alternative over the others. If a test gave the relative 

odds of two models in light of the evidence, then a ratio of 1:1 is clearly the 

dividing line. Observers might disagree about whether a given ratio, say 3:1, 

should be regarded as weak, moderate, or strong evidence, but they could 

not disagree about the direction of the evidence. Thus, in contrast to con-

ventional hypothesis tests, the standards for evaluating the test would not be 

completely arbitrary. Informally, researchers using conventional tests some-

times interpret large p-values as evidence in favor of the null hypothesis, 

but the choice of any specific level above which the p-value should count as 

evidence in favor of the null hypothesis is at least as arbitrary as the choice 

of a level for statistical significance, and no standard convention has been 

adopted. 

From either point of view, using classical tests when theoretical proposi-
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tions are represented by the alternative hypothesis means that a theory can-

not be refuted, and so it may not be abandoned even after repeated failures to 

confirm its predictions. A theory that predicts the sign could be refuted by 

statistically significant estimates with the “wrong” sign, but as Merton (1945, 

p. 464) points out, many “theories” in the social sciences “indicate types of 

variables which are somehow to be taken into account rather than specifying 

determinate relationships between particular variables.” In essence, they are 

claims that a certain class of factors is an important influence on an outcome. 

General claims of this kind can often be interpreted to accommodate param-

eter estimates with either sign, so that they can never be refuted by classical 

hypothesis tests (see Jackson and Curtis, 1972, for discussion of an example). 

In fact, the possibility of being among the first to find empirical support for 

a well-known theory will give researchers an incentive to keep trying, and 

given enough attempts, a few are likely to produce “significant” results sim-

ply by chance. As a result, a theory may endure in a sort of limbo—neither 

strongly supported nor clearly refuted. 

2.3.8	 Likelihood Principle 

A p-value represents the probability that a test statistic would be greater than 

or equal to the observed value if the null hypothesis were true.4 That is, it 

takes account of the probability of events that did not occur—values of the 

test statistic greater than the one that was observed. Some observers regard 

this as illogical: they hold that conclusions should be based only on the prob-

ability of the event that actually occurred. As Jeffreys (1961, p. 385) put it in 

a widely cited remark: “What the use of P[-values] implies .  .  . is that a 

hypothesis that may be true may be rejected because it has not predicted 

observable results that have not occurred. . . . On the face of it the fact that 

such results have not occurred might more reasonably be taken as evidence 

for the law, not against it.” Similar passages appear in several of his other 

writings (Jeffreys, 1938, p. 194; 1980, p. 453), suggesting that he considered 

it to be an important point. 

This idea that conclusions should be based only on the observed data 

has come to be known as the “principle of likelihood” (Savage et al., 1962, 

4With a two-tailed t-test, the test statistic should be understood as |t|.
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p. 17). In a large sample, the probability that a test statistic will have any spe-

cific value approaches zero, so the principle of likelihood implies that a test 

must be based on a comparison of models. The principle of likelihood raises 

complex issues, and is not universally accepted. However, it has an obvious 

intuitive appeal, so the fact that conventional hypothesis tests violate it is 

cause for concern. 

2.4	 Implications of the Criticisms 

In recent years, many of the criticisms of conventional hypothesis testing 

have coalesced around a central point: that the conventional .05 standard 

is too weak, and consequently a large fraction of “statistically significant” 

results are spurious. If R is the ratio of true to false null hypotheses, then the 

odds that a test statistic that is significant at the .05 level represents a real 

relationship cannot be greater than 20:R. For example, suppose that, out of 

1,000 null hypotheses, 100 are false and 900 are true, so that R = 9. We can 

expect to reject 45 (.05 × 900) true null hypotheses. Even if all 100 of the 

false null hypotheses are rejected, about 30% (45 of 145) of the rejected null 

hypotheses will actually be true. Realistically, we will not always reject the 

null hypothesis when it is false, so the proportion of spurious “findings” will 

be higher. If statistically significant results are more likely to be published, 

and investigators have some flexibility to select the most impressive results 

(e.g., reporting only specifications in which the parameter of interest is sta-

tistically significant), the proportion will be higher still. Ioannidis (2005; 

see also Young and Kerr, 2011) presents a model of the research and publica-

tion process in which most published findings of statistically significant rela-

tionships are spurious. These concerns have been particularly prominent in 

medical research and in social psychology, where it has become common to 

speak of a “crisis of replication,” but researchers in other fields—for example, 

Hauser (1995) in sociology—have expressed similar concerns. 

If this diagnosis is accepted, the obvious response would be to raise 

the bar for statistical significance; for example, to use the .01 level as the 

standard. However, as discussed in Section 2.3.5, there is no obvious way 

to decide on a specific alternative, so any choice will be somewhat arbitrary 

and open to objection. In addition, one could argue that the standard should 
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depend on sample size, but as discussed in Section 2.3.6 there is no accepted 

rule for making an adjustment. Finally, because conventional hypothesis 

tests cannot produce evidence for the null hypothesis, it would still not be 

possible to dispose of ideas that had not been supported. For these reasons, 

some observers hold that the problem goes beyond the .05 standard and 

involves the basic logic of conventional hypothesis tests. 

Another criticism of standard hypothesis testing is that it has a detri-

mental effect on the development of theory. If a theory predicts that a param-

eter has a particular sign, a significant parameter estimate with the expected 

sign can be claimed as favorable evidence. As a result, researchers have no 

incentive to develop theories that offer predictions about the exact value of 

a parameter; in fact, they have an incentive not to, since offering a precise 

prediction would make it easier for the theory to be refuted. The result is a 

proliferation of vaguely specified theories (Meehl, 1978). 

This line of criticism could be seen as directed at the state of theoriz-

ing in the social sciences rather than at the procedure of testing. If a theory 

offered a precise prediction about the magnitude of a parameter, that predic-

tion could be treated as the null hypothesis (see Section 2.3.7). Accepting 

the null hypothesis would mean that the theory had survived a challenge, 

and rejecting it would suggest that the theory needed to be revised. There-

fore, one response is that theories should go beyond predicting the direction 

of association and offer more precise claims about magnitude or functional 

form. As Tukey (1969/1986, p. 728) put it, if “elasticity had been confined to 

‘When you pull on it, it gets longer!,’ Hooke’s law, the elastic limit, plasticity, 

and many other important topics could not have appeared.” However, few 

theories in the social sciences offer precise predictions or appear to have 

much potential to be developed to the point of offering precise predictions in 

the near future, leaving open the question of how best to evaluate the kind of 

theoretically based hypotheses that we actually have. 

2.5	Al ternatives to Conventional Tests 

Several alternatives to conventional hypothesis tests have been proposed, but 

two are particularly popular. Both are “penalized likelihood criteria” of the 

form: 
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	 D + p f(N) 

where p is the number of parameters estimated in the model and f(N) is a 

nondecreasing function of sample size. Statistics of this kind impose a pen-

alty for increased complexity, which is understood as the number of parame-

ters in the model. Unlike conventional hypothesis tests, penalized likelihood 

criteria provide a complete ranking of all of the models that are applied to 

a given set of data. Akaike (1974/1998) proposed making f(N) = 2, yielding 

the AIC. Schwartz (1978) proposed making f(N) = log(N), yielding the BIC. 

A number of other model selection criteria have been proposed, but most of 

these are asymptotically equivalent to either the AIC or the BIC (Teräsvirta 

and Mellin, 1986). 

As the name suggests, the BIC is based on Bayesian principles (although 

not all Bayesians accept it, for reasons that will be discussed in Chapter 4). 

The general idea of the Bayesian approach to hypothesis testing is to obtain 

a statistic representing the weight of evidence in favor of one model over the 

other, known as the “Bayes factor.” Although many observers find the idea of 

a statistic representing the weight of evidence appealing in principle, direct 

calculation of Bayes factors is usually difficult. The attraction of the BIC is 

that it offers a simple way of calculating an approximate Bayes factor. If the 

BIC for Model 1 is B1 and the BIC for Model 2 is B2, then the Bayes factor 

favoring Model 2 over Model 1 is e(B1–B2)/2. For example, if B1 is 100 and B2 

is 90, then the corresponding Bayes factor is e5 ≈ 148. This means that the 

observed data are 148 times more likely under the assumption that Model 2 is 

true. A Bayes factor is distinct from the prior probabilities of the models: two 

observers who disagreed about whether Model 2 was plausible in principle 

might nevertheless agree on the Bayes factor. 

There is no single Bayes factor; instead, different definitions of the 

hypotheses will lead to different Bayes factors. This point will be discussed 

in detail in Chapter 4, but in this chapter attention will be confined to the 

BIC, which is much more widely used than other Bayesian tests. This is not 

simply because it is easy to calculate; advocates argue that the BIC can be 

justified as a default choice (Kass and Raftery, 1995). 

The BIC and AIC imply very different standards for the inclusion of extra 

parameters. The AIC implies that a parameter should be included if the abso-

lute value of its t-ratio is greater than 2 , which is equivalent to using a 
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p-value of about .15 in a two-tailed test. As a result, if parameters are added 

or removed one at a time, more complex models will be chosen when the AIC 

is used as a criterion than when conventional hypothesis tests are used. The 

BIC implies that a parameter should be included if the absolute value of the 

t-ratio is greater than log( )N . If N = 100, this is about 2.15, slightly higher 

than the conventional critical value for a two-tailed test at the .05 level. If 

N = 1,000, the value is 2.63, and if N = 10,000, it is 3.03. As a result, the 

BIC tends to favor simpler models than conventional hypothesis tests or the 

AIC, especially when the sample size is large. Moreover, unlike conventional 

hypothesis tests, it can provide evidence in favor of the null hypothesis. This 

is part of the attraction of the BIC for some observers: by raising the bar for 

statistical significance and allowing for evidence in favor of the null hypoth-

esis, it seems to offer a solution to the “crisis of replication” (Hauser, 1995; 

Wagenmakers, 2007). 

For both the AIC and the BIC, the “break-even” value increases in propor-

tion to the degrees of freedom. In a conventional chi-square test, the critical 

value increases at a decreasing rate: for example, the 5% critical values for 1, 

5, and 10 degrees of freedom are 3.84, 11.1, and 18.3, respectively. Therefore, 

as the number of degrees of freedom in a test increases, the a corresponding 

to the AIC break-even point declines toward zero. For example, in a test with 

7 degrees of freedom, the break-even value for the AIC will be approximately 

equal to the .05 critical value; in a test with 16 degrees of freedom, it will 

be approximately equal to the .01 critical value. The “conservatism” of the 

BIC relative to standard hypothesis tests is enhanced in tests with multiple 

degrees of freedom. As a result, model selection using conventional hypoth-

esis tests, the AIC, and the BIC can lead to very different conclusions. The 

examples considered in the next section will illustrate these differences. 

2.6	E xamples 

This section will consider the application of conventional hypothesis tests, 

the AIC, and the BIC to four examples. No small group of examples can 

adequately represent the whole range of research in the social sciences, but 

these datasets are quite diverse and use hypothesis tests for a number of dif-

ferent purposes. 
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2.6.1	E conomic Growth 

The first example involves the selection of control variables through the use 

of data on economic growth in 88 nations between 1960 and 1996 compiled 

by Sala-i-Martin, Doppelhofer, and Miller (2004). The dataset includes mea-

surements of 67 variables that have been suggested as influencing economic 

growth. The goal of their research was to give an overview, ranking each vari-

able in terms of the strength of evidence that it had some effect on growth. 

However, for this example, I will focus on one variable—“ethnolinguistic 

fractionalization,” or the probability that two randomly selected members of 

the nation will not speak the same language—and treat the others as merely 

potential control variables. Some observers have argued that fractionaliza-

tion reduces economic growth, either by leading to political unrest or by 

making it more difficult to organize economic activity (Alesina, Devlee-

schauwer, Easterly, Kurlat, and Wacziarg, 2003). The values of the fraction-

alization measure range from zero in South Korea to 0.89 in Tanzania. The 

dependent variable is average annual growth in per-capita GDP, which ranges 

from –3.18% (Zaire) to 6.91% (Singapore). 

Table 2.2 shows selected statistics from seven models.5 The first model 

includes all potential control variables, while the others use stepwise regres-

sion to decide on the control variables. Models 2–4 begin with only the mea-

sure of fractionalization and use levels of .05 (Model 2), .10 (Model 3), and .15 

(Model 4) to add or remove control variables. Models 5–7, like Models 2–4, 

use standards of .05, .10, and .15, respectively, but they begin by including all 

independent variables. The estimated effects of fractionalization differ widely 

among the models, ranging from 0.30 in Model 7 to –1.14 in Model 2. The 

estimate in Model 2 is statistically significant by conventional standards 

(p = .012), while the estimate in Model 3 is in the range that is sometimes 

treated as significant (p = .055). Given the range of the independent and 

dependent variables, an estimate of –1.14 is certainly large enough to be of 

interest: it would imply that the difference in fractionalization between Korea 

5The figures for the AIC and BIC given here are N log(SSE) + 2p and N log(SSE) + 
p log(N). The likelihood of a model with normally distributed errors depends on the 
variance of the error distribution, which is unknown and has to be estimated from 
the data. This formula uses the maximum likelihood estimate of the variance—
a formula using the unbiased estimate would give somewhat different figures. 
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and Kenya produced a difference of about 1% in annual growth rates, which 

would come to about 50% over the whole period. However, the estimates in 

the other models are not statistically significant—the t-ratios are all well 

under 1.0. Thus, conclusions about the relationship, or absence of a relation-

ship, between fractionalization and growth depend on the choice of control 

variables. 

The AIC chooses Model 6 as the best, while the BIC chooses Model 5. 

However, the difference between the BIC statistics for Models 5 and 6 is only 

0.9, implying odds of only about 1.5:1 in favor of Model 5 over Model 6. When 

using conventional hypothesis tests, the decision depends on the prior choice 

of a standard of significance. Although .05 is the usual standard, it is possible 

to make arguments for a less stringent level. First, the sample is relatively 

small, so it may be difficult to reject a false null hypothesis. Second, if the 

goal is to estimate the effect of fractionalization on economic growth, the 

potential of bias from omitting a relevant variable might be regarded as more 

serious than the loss of efficiency from including an irrelevant one. However, 

neither of these arguments is definitive, so individual judgment plays a role. 

A second issue in the standard approach is how to choose between 

models using the same level of significance but different starting points. For 

example, if we adopt a standard of .05, then it is necessary to decide between 

Models 2 and 5. The models are not nested, but it is possible to fit a model 

that includes all independent variables that appear in either model. With 

respect to Model 2, the hypothesis that the coefficients of the additional vari-

ables in the larger model are all zero can be rejected (p = .004); with respect 

TABLE 2.2. E stimated Effects of Fractionalization on Economic Growth

 
Model

 
Estimate

Standard 
error

 
p

 
df

 
R2

 
MSE

 
AIC

 
BIC

1 –0.02 1.41 67 20 .913 1.362 –779.7 –613.7

2   –1.14* 0.44 10 77 .788 0.868 –814.7 –789.9

3 –0.90 0.46 11 76 .792 0.862 –814.5 –787.2

4 –0.02 0.50 17 70 .837 0.734 –823.9 –781.7

5 –0.24 0.47 13 74 .824 0.749 –825.2 –793.0

6   0.19 0.49 15 72 .839 0.702 –829.3 –792.1

7   0.30 0.56 27 60 .876 0.650 –828.1 –761.2

Note. Bold type indicates the best fitting model according to that criterion. 
*Indicates that the estimate is significantly different from zero at the .05 level. 
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to Model 2, the hypothesis that all of the additional coefficients are zero can-

not be rejected (p = .12). Therefore, Model 5 could ultimately be chosen over 

Model 2. 

In a general sense, all three approaches yield the same conclusion: the 

data do not provide clear evidence for the claim that ethnolinguistic frac-

tionalization influences economic growth. However, there is a difference in 

the conclusions suggested by the BIC and those of classical tests. Using con-

ventional hypothesis tests, the ultimate conclusion is that the data do not 

contain enough information to tell us much about the relationship between 

fractionalization and economic growth. In Model 5, the confidence interval 

for the coefficient ranges from –1.16 to +0.68; that is, it ranges from a substan-

tial negative effect to a substantial positive effect. The BIC, in contrast, leads 

to a more definite conclusion. The difference in BIC values between Model 5 

and a model omitting ethnolinguistic fractionalization can be computed by 

using the t-ratio and sample size: ( )2
.24
.47

 – log(88) = –4.2. This difference 

gives odds of e(4.2/2) = 8.2 in favor of the model that omits fractionalization. 

That is, the BIC implies that we have fairly strong evidence in favor of the 

null hypothesis that ethnolinguistic fragmentation has no effect whatsoever 

on economic growth. 

An important point that applies to all three methods of model selection 

is that conclusions depend on the models that are considered. For example, 

if we limit attention to the three models that were obtained by starting from 

the regression of growth on fractionalization (that is, Models 2–4), then the 

BIC would choose Model 2. The t-ratio for ethnolinguistic fractionalization in 

that model is 2.59, implying odds of about 3:1 in favor of the proposition that 

fractionalization affects economic growth.6 This point means that when it is 

not practical to estimate every possible model it is necessary to think about 

the strategy of searching for models. 

2.6.2	D evelopment and Fertility 

The second example also relates to a comparison of nations, but it involves 

only two variables, the total fertility rate and scores on the Human Develop-

ment Index (HDI), which is a combination of measures of health, education, 

and per-capita GDP. In 2005, the HDI ranged from 0.3 to 0.97, with a mean 

6The break-even t-value for 88 cases is 2.11. 
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of 0.71. It has long been known that higher levels of development go with 

lower levels of fertility. Myrskylä, Kohler, and Billari (2009), however, argue 

that this relationship is not monotonic—that, after development exceeds a 

certain point, further increases in development are associated with increases 

in fertility. This hypothesis goes beyond saying that the relationship between 

development and fertility is nonlinear: it holds that there is a reversal of 

direction that occurs within the range of development found among nations 

today. At the same time, it does not imply a precise model for the relation-

ship. Thus, the question is one of primary structure; that is, choosing a model 

in order to estimate theoretically meaningful parameters. 

Table 2.3 shows fit statistics from several models of the relationship. 

The first is a linear regression, which can be taken as a baseline. The second 

is the spline model proposed by Myrskylä et al. (2009), in which there are 

two distinct linear relationships, one that holds when the HDI is less than 

or equal to 0.85, another that applies when the HDI increases beyond 0.85. 

Because the value of 0.85 was chosen after examination of the data, it should 

be regarded as another parameter rather than as a constant. The model there-

fore involves three parameters (excluding the intercept): the two slopes and 

the point dividing the range in which each slope applies. The third and fourth 

models are polynomials including powers of the HDI. Model 5 is a nonlinear 

regression given by 

	 y = a + b1 x + b2 xg + e; e ∼ N(0, s2) 

It is clear that the relationship between fertility and development is non-

linear: all criteria favor at least one of the nonlinear models over the linear 

TABLE 2.3. Models for the Relationship  betweeen Development  
and Fertility

Model Form R2 p df MSE AIC BIC

1 Linear .783 1 138 0.585 614.36 620.22

2 Spline (.85) .810 3 136 0.519 599.81 611.54

3 Quadratic .807 2 137 0.524 600.14 608.94

4 Cubic .810 3 136 0.519 599.80 611.54

5 a + b1x + b2xg .811 3 136 0.515 598.73 610.46

Note. Bold type indicates the best fitting model according to that criterion. 
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regression. However, the lowest value of the AIC occurs for the nonlinear 

regression (Model 5), while the lowest value of the BIC occurs for the qua-

dratic polynomial (Model 3). More precisely, according to the BIC the evi-

dence favors Model 3 over Model 5 by exp[(610.46 – 608.94)/2] = 2.1. These 

models have very different implications on the point of theoretical interest. 

In the quadratic model, the relationship between development and fertility 

is negative over the entire range of HDI values. At HDI = 0.96, the estimated 

value of ∂y∂x is about –3. In Model 5, the relationship changes direction 

for HDI values above 0.915, and ∂y∂x is equal to about 0.9 at HDI = 0.96. 

Thus, conclusions about the Myrskylä, Kohler, and Billari hypotheses differ, 

depending on whether one uses the AIC or BIC. 

In the classical approach, the linear model can be rejected against the 

quadratic model. The quadratic model cannot be rejected against the cubic 

model at conventional levels of significance (the t-ratio for the cubed term is 

1.51, giving a p-value of .13). The quadratic model is a special case of Model 

5, implying the restriction g = 2. An F-test involving Models 3 and 5 gives a 

value of 3.39 (1, 136 df), which has a p-value of .068. This is in the gray area 

that might be treated as weak support for Model 5 or as grounds for accepting 

the quadratic model. The spline model cannot easily be tested against any of 

the others, but it has a larger mean square error than Model 5 and the same 

number of degrees of freedom, so there is no reason to prefer it. 

To summarize, if the AIC is used as the model selection criterion, the 

results support the proposition that the effects of development on fertility 

change direction; if conventional hypothesis tests are used, they are ambigu-

ous; and if the BIC is used, they count against it. None of the approaches can 

be interpreted as strongly favoring one model over the others, so it could be 

said that all agree in the sense of suggesting that more evidence is needed 

before we can offer a firm conclusion. Nevertheless, they lead to different 

conclusions about the most fundamental point—the direction of the evi-

dence provided by the data. 

2.6.3	C omparative Social Mobility 

The third example involves social mobility in the United States and Britain 

(Long and Ferrie, 2013). The data are tables of father’s occupation by own 

occupation for samples of 19th-century British men, 20th-century British 
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men, 19th-century American men, and 20th-century American men. 

Occupation is classified into five categories: higher white-collar, lower 

white-collar, farmer, skilled and semiskilled manual, and unskilled man-

ual.7 The sample includes 9,304 men. The table can be analyzed using what 

Erikson and Goldthorpe (1992; see also Xie, 1992) call a “uniform differ-

ence” model: 

	 log(  ̂n     ijk) = bik + bjk + fkgij	 (2.5) 

where i represents father’s occupation, j represents own occupation, k repre-

sents the combination of nation and time, and n is the number of cases that 

have a given combination of characteristics. For example, n111 is the number 

of 19th-century American men with professional jobs whose fathers also had 

professional jobs. The observed values of n are assumed to follow a Pois-

son distribution with parameter   ̂n    . The b parameters represent the marginal 

totals of men in different occupations at each time and place. The associa-

tion between occupations is represented by the product of the gij parameters, 

which represent the pattern of assocation between different occupations, and 

the fk parameters, which represent the strength of the association. 

An appealing feature of this model is that it makes it possible to describe 

differences in mobility in simple terms: a higher value of f means a stron-

ger association, or less mobility. It is possible that the model will not hold; 

that the pattern of association will differ in more complex ways over times 

or places. In terms of the classification in Section 2.2, this means that one 

of the purposes of model selection in this example is to decide on primary 

structure. 

Table 2.4 shows fit statistics from several models. The column headed 

“df” gives the number of degrees of freedom remaining after fitting the 

model; the number of parameters in each model is 100 – df. Model 3 repre-

sents the model in Equation 2.5: a common pattern but different amounts 

of mobility. The estimated values of f are 1.48 for 19th-century Britain, 1.26 

for 20th-century Britain, 0.61 for 19th-century America, and 0.90 for 20th-

century America. The basic conclusion is that the gap between the nations 

7Long and Ferrie considered several different classifications. The data used here are 
taken from Long and Ferrie (2008, Tables A-2-1 and A-2-2). 



Cop
yri

gh
t ©

 20
16

 The
 G

uil
for

d P
res

s

36	 Hypothesis Testing and Model Selection in the Social Sciences	

became smaller in the 20th century, mostly because of increased inheri-

tance of status in the United States. This is the best fitting model according 

to the BIC. 

The AIC, however, favors Model 4, in which the pattern of mobility differs 

between the 19th and 20th centuries. In terms of Equation 2.5, this means 

that there are two sets of g parameters, one for the 19th century and one for 

the 20th. Within each century, it is possible to compare the nations: as with 

Model 4, social mobility is greater in the United States in both the 19th and 

20th centuries, but the national differences are smaller in the 20th century. 

However, this model does not allow one to say that social mobility increased 

or decreased over time; all one can say is that the pattern of mobility changed. 

Using conventional hypothesis tests, only Model 6 can be accepted at the .05 

level of significance. This is a “saturated” model, fitting one parameter for 

every data cell, so that it reproduces the data perfectly but leaves no degrees 

of freedom. In this example, it can be understood to mean that each nation at 

each time has a qualitatively different pattern of social mobility. The p-value 

for Model 4 is about .02, so some investigators might argue in favor of accept-

ing it, particularly given the large sample size. Model 3 can be rejected at any 

reasonable level of significance against both Models 4 and 6. 

In the first two examples, the BIC and classical tests agreed that there 

was room for doubt about which model should be preferred. In this case, 

however, the conclusions are completely different. According to the BIC, 

the odds in favor of Model 3 against Model 6 are 
913.8 610.7

2e
−

, or about 1064, 

although the p-value of Model 3 is about .00000004. The odds in favor of 

Model 3 against Model 4 are also very strong, about 1017. As a result, the BIC 

implies that, if one of these models is correct, it is almost certainly Model 3. 

TABLE 2.4. F it Statistics for Models of Social Mobility  
in the United States and Britain

Model Association Deviance df AIC    BIC

1 No association 1,747.3 64 1,819.3 2,076.3

2 No differences in association 268.9 48 372.9 744.1

3 Different amounts 108.1 45 218.1 610.7

4 Amount by nation, pattern by time 48.1 30 188.1 687.8

5 Amount by time, pattern by nation 69.0 30 209.0 708.7

6 Different patterns           0 0 200.0 913.8

Note. Bold type indicates the best fitting model according to that criterion. 
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The difference reflects two features of the data: first, the sample is large, 

and second, the tests involve multiple degrees of freedom. Both of these fac-

tors increase the divergence between the BIC and classical tests. In a sample 

of 139 cases, like the fertility example, an additional parameter must reduce 

the deviance by at least 4.93 in order to reduce the BIC; in a sample of 9,304, 

it must reduce the deviance by at least 9.14. For tests of a single parameter, 

these figures correspond to t-ratios of about 2.2 and 3.0, or p-values of about 

.03 and .004. The differences grow as the number of degrees of freedom 

increase: with a sample of 9,304, a model including three extra parameters 

must reduce the deviance by at least 27.4 to reduce the BIC, which corre-

sponds to a p-value of about 5 × 10–6. 

Putting statistical issues aside, this example illustrates a feature of the 

BIC that many researchers find appealing (Hauser, 1995; Xie, 1999). In some 

cases, the BIC favors a model with a straightforward interpretation, while 

classical tests lead to a much more complex model. In this case, Model 3 

permits a direct answer to questions about whether there is more or less 

mobility in different societies; Model 6 tells us that there are differences in 

the patterns of mobility but does not give any guidance on how they should 

be described. 

2.6.4	R ace and Voting Choices 

The final example involves the 2004 U.S. presidential election, using data 

from the Edison–Mitofsky election day exit poll. The models are binary logis-

tic regressions of the choice between the two major candidates, George W. 

Bush and John Kerry. In contrast to the first three examples, which all focus 

on specific hypotheses, this example involves an inductive or exploratory 

analysis. The general question is whether there are interaction effects involv-

ing race.8 The survey contains information on a number of other potential 

influences on vote: age, family income, gender, marital status, state of resi-

dence, and size of community. More information on the variables is provided 

in Table 2.5. Although the exit poll does not contain as many demographic 

8The race variable is a dichotomous division between blacks and all others. For con-
venience, I will sometimes refer to the nonblack group as “whites.”
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variables as some other election surveys, its large sample size provides more 

power to detect any interactions that might exist. 

The baseline model includes the main effects of all variables but no inter-

action effects. Adding interactions between race and all of the other indepen-

dent variables adds 47 parameters and reduces the deviance by 166.0. The 

5% critical value for a chi-square distribution with 47 degrees of freedom is 

64, and the 0.1% critical value is 82.7, so the hypothesis that the effects of all 

variables are the same among blacks and whites can be definitively rejected. 

The next step in an investigation using conventional tests is to consider 

intermediate models in which there are interactions involving some subset of 

the independent variables. Table 2.6 shows the relevant parameter estimates 

and standard errors from the model including interactions (estimates involv-

ing state differences are omitted to save space). 

The estimates for income and marital status are almost the same among 

blacks and whites, and the null hypothesis can obviously be accepted. This 

conclusion, however, does not mean that there is positive evidence that the 

effects are the same or even that any differences are “small.” Examination of 

the standard errors shows that there is a wide range of uncertainty: it is cer-

TABLE 2.5. Description of Variables, 2004 Exit Poll

Variable Values

Categorical variables
Race Black

Nonblack

Community City over 500,000
City 50,000–499,999
Suburb
City 10,000–49,999
Rural

Sex Male
Female

Marital status Married
Not married

State

Covariates
Family income 1 = under $15,000 . . . 8 = $200,000 or more

Age 1 = 18–24 . . . 9 = 75 and over
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tainly possible that the effects are the same, but it is also possible that they 

are substantially larger or smaller among blacks—that is, there is not enough 

evidence to make any strong claim one way or the other. The BIC, however, 

gives very different conclusions: odds of about 100:1 in favor of the hypoth-

esis of no difference. 

The estimated effects of gender are considerably smaller for blacks than 

for whites, but the hypothesis of no difference cannot be rejected using con-

ventional tests—the t-ratio is about 1. The BIC finds strong evidence in favor 

of the hypothesis of no difference (odds of 70:1). 

Table 2.7 shows fit statistics from a number of models. Models 3–5 con-

sider state, community, and age interactions assuming that the effects of 

income, gender, and marital status do not differ by race. The difference in 

deviance between Models 3 and 4 is 2.8, which is in between the 5% and 10% 

TABLE 2.6.  Selected Parameter Estimates and Standard 
Errors from Model 2

   Nonblack     Black             Difference

Male .258*** .061 .197
(.042) (.195) (.199)

Age –.020* –.100* .080
(.010) (.051) (.052)

Income .094*** .096 –.002
(.013) (.064) (.065)

Married .490*** .473* .017
(.047) (.212) (.217)

Community
  Large city –.500*** –1.659**

(.096) (.576)

  City –.283*** .119
(.082) (.433)

  Suburbs –.146* –.186
(.071) (.438)

  Town .067 –.347
(.103) (.393)

  Rural .000 .000

Note. Standard errors in parentheses. Statistical significance is indicated by * = .05;  
** = .01; *** = .001.
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critical values. The difference in deviance between Models 4 and 5 is 12.0, 

which falls in between the 5% and 1% critical values for a chi-square dis-

tribution with four degrees of freedom. The difference in deviance between 

Models 1 and 5 is about 150 with 39 degrees of freedom, which is well 

beyond the 0.1% critical value. Thus, a researcher using a 10% level would 

choose Model 3, a researcher using a 5% level would choose Model 4, and a 

researcher using a 1% level would choose Model 5. However, most research-

ers do not strictly follow a single significance level, so the usual conclusion 

would be that there is weak evidence that the effects of age differ by race, 

reasonably strong evidence that the effects of community differ, and strong 

evidence that the effects of state differ. 

The lowest value of the AIC occurs for Model 3, followed closely by 

Model  4. Thus, researchers using the AIC and standard hypothesis tests 

would come to similar conclusions. The BIC, however, strongly favors a 

model including no interactions (Model 1) over Models 2–5. 

The final alternative, Model 6, holds that there are differences by state 

in the voting choices of nonblacks, but not among blacks. The relationships 

among Models 1, 5, and 6 can be understood by considering bj and gj, the set 

of parameters representing the effects of state among blacks and nonblacks. 

Model 5 imposes no restriction on the values of these parameters. Models 1 

and 6 are both nested in this model: Model 1 imposes the restriction bj = gj 

for all j, while Model 6 imposes the restriction that bj = 0 for all j. As seen 

previously, Model 6 can be rejected against Model 5: they differ by 90.4 in 

deviance and 39 in degrees of freedom, and the 0.1% critical value for a chi-

TABLE 2.7. F it Statistics for Models of Democratic versus Republican 
Vote, Interactions with Race

Model Association Deviance df AIC BIC

1 None 13,902.9 56 14,014.9 14,428.2

2 State, community, income,  
  age, sex, married

13,736.9 103 13,942.9 14,703.2

3 State, community, age 13,738.0 100 13,938.0 14,676.1

4 State, community 13,740.8 99 13,938.8 14,669.5

5 State 13,752.8 95 13,942.8 14,644.0

6 State (nonblack only) 13,843.2 56 13,955.2 14,368.5

Note. N = 11,862 for all models. Bold type indicates the best fitting model according to that criterion. 
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square distribution with 39 degrees of freedom is 72.0. The BIC, however, 

strongly favors Model 6 over Model 5. 

This example, like the preceding one, illustrates the tendency of the BIC 

to favor simpler models than conventional hypothesis tests and the AIC, par-

ticularly when the number of cases is large. The example also illustrates a 

more subtle point—the ambiguity in the meaning of “a simple model.” In 

terms of the number of parameters, Models 2 and 6 are equally complex. How-

ever, Model 2 contains only main effects, while Model 6 involves an interac-

tion between state and race, so in some sense Model 2 might be regarded as 

simpler. Investigators analyzing this kind of data often do not even consider 

possibilities like Model 6. 

2.7	 Summary and Conclusions 

This chapter has described the various purposes for which hypothesis tests 

are used and the major criticisms that have been made against that practice. 

It introduced two alternatives to conventional tests, the AIC and the BIC, and 

illustrated their application to four examples. The examples show that the 

different methods of model selection can lead to very different conclusions. 

This difference was particularly evident in the social mobility example: the 

BIC strongly supported the hypothesis that all four cases had the same pat-

tern of mobility, while conventional tests strongly rejected that hypothesis. 

Even in cases where the methods favored the same model, their implications 

could differ in important ways. In the economic growth example, the BIC 

implies fairly strong evidence against the proposition that ethnolinguistic 

fractionalization affects growth, while a classical test merely says that we 

cannot rule out the possibility of no effect. 

As a result, the strategy of using both the BIC and conventional hypoth-

esis tests, as advocated by Xie (1999), is not viable. In many cases, when two 

alternative statistics have been proposed, it is informative to consider both. 

To take a simple example, the mean and median are both measures of central 

tendency; if there is a substantial difference between them, that tells us some-

thing about the distribution of the variable. However, the AIC, the BIC, and 

classical tests do not provide different information about the fit of the model; 
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rather, they all involve a comparison of deviance to degrees of freedom and 

simply propose different standards for interpreting the same information. 

Therefore, it is necessary to examine the rationale for each criterion in detail 

and to decide which is most persuasive. 
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